Multi-Modal Handbook

Acknowledgments

Chester County Board of Commissioners
Terence Farrell
Kathi Cozzone
Michelle Kichline

Technical Committee
John Calnan SEPTA
Mark Cassel, AICP SEPTA
Tim Phelps TMACC
Chris Williams, PE TMACC
Greg Krykewycz, PP, AICP DVRPC
Cassidy Boulan DVRPC
Fran Hanney PennDOT District 6-0
John Otten PennDOT District 6-0
Doug Hanley Uwchlan Township
Jean Krack Borough of Phoenixville
Gerry Prowant, AICP Caln Township
Cary Vargo Upper Uwchlan Township
John Weller, AICP West Whiteland Township

Chester County Planning Commission
Matthew Hammond, P.E., Chairman*
Dr. Douglas Fasick, Vice Chairman
Daniel DiMucci, RLA, ASLA*
Judy L. DiFilippo
Kevin C. Kerr*
Nancy Mohr
E. Martin Shane*
Joseph J. Tarantino
John C. Washington, III

Planning Commission Staff
Ronald T. Bailey, AICP Executive Director
David D. Ward, AICP Assistant Director
Randy Waltermyer, AICP Transportation Services Director
Carol Stauffer, AICP Infrastructure Director
Tom West Technical Services Director
Brian Styche, RLA Transportation Planner
Glenn Bentley Community Planner
Mark Gallant Community Planner
Kevin Myers Community Planner
Christopher Bittle Graphics Specialist
Elizabeth Kolb Graphics Specialist
Steven Cummings Technical Services Specialist
Carolyn Oakley Web Specialist

*Chester County Planning Commission members that served on the Technical Committee

Funding for the development of this Multimodal Handbook provided by:

Delaware Valley Regional Planning Commission
1 – Introduction ...7

Introduction ..9
Purpose ...9
How to use the handbook ..9

2 – Principles ...11

Establishing the Policy Framework ...14
 Landscapes2 ..14
 Multimodal Transportation Corridors ..16
 Public Transportation Plan ..17
 PennDOT Smart Transportation ...17
Top Principles ...18
Defining The Context ..20
 STEP 1: Determine Land Use Context ..20
 STEP 2: Determine Roadway's Functional Classification ...21
 STEP 3: Translate between CCPC and PennDOT Terminology ..29
 STEP 4: Apply Design Criteria ...29

3 – Design Elements ...31

Introduction ..32

Bicycle/Pedestrian Circulation

Bicycle Facilities ..33
 Bicyclist User Groups ...33
 Shared Roadway ..35
 Shared Roadway Signage ...36
 Sharrow ...37
 Signed Bike Routes ...37
 Bicycle Boulevard ...38
 Bicycle Lanes ...38
 Cycle Track ..39

Pedestrian Facilities ..47
 Sidewalks ...47
 Walkways ..51
 Crosswalks ...53
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shared Use Facilities</td>
<td>57</td>
</tr>
<tr>
<td>Multi-Use Trails</td>
<td>57</td>
</tr>
<tr>
<td>Sideways</td>
<td>58</td>
</tr>
<tr>
<td>Use-Restricted Trails</td>
<td>58</td>
</tr>
<tr>
<td>Mid-Block Crossings</td>
<td>59</td>
</tr>
<tr>
<td>ADA Accessibility</td>
<td>63</td>
</tr>
<tr>
<td>Public Transportation</td>
<td></td>
</tr>
<tr>
<td>Bus Stops</td>
<td>67</td>
</tr>
<tr>
<td>Park and Rides</td>
<td>79</td>
</tr>
<tr>
<td>Rail Stations & Transportation Centers</td>
<td>85</td>
</tr>
<tr>
<td>Infrastructure & Amenities</td>
<td></td>
</tr>
<tr>
<td>Bicycle Parking</td>
<td>91</td>
</tr>
<tr>
<td>Emergency Access</td>
<td>97</td>
</tr>
<tr>
<td>Landscape Material</td>
<td>101</td>
</tr>
<tr>
<td>Lighting</td>
<td>105</td>
</tr>
<tr>
<td>Noise Control</td>
<td>107</td>
</tr>
<tr>
<td>Parking</td>
<td>111</td>
</tr>
<tr>
<td>Setbacks & Building Placement</td>
<td>127</td>
</tr>
<tr>
<td>Signage (Non-Traffic Related)</td>
<td>133</td>
</tr>
<tr>
<td>Vehicular Circulation</td>
<td></td>
</tr>
<tr>
<td>Boulevard</td>
<td>135</td>
</tr>
<tr>
<td>Cul-de-sac & Spur Roads</td>
<td>139</td>
</tr>
<tr>
<td>Driveways</td>
<td>143</td>
</tr>
<tr>
<td>Intersections</td>
<td>153</td>
</tr>
<tr>
<td>Lane Design</td>
<td>165</td>
</tr>
<tr>
<td>Right-of-Way</td>
<td>179</td>
</tr>
<tr>
<td>Roadway Design Standards</td>
<td>185</td>
</tr>
<tr>
<td>Roundabouts</td>
<td>195</td>
</tr>
<tr>
<td>Traffic Calming</td>
<td>199</td>
</tr>
<tr>
<td>Vehicle Characteristics</td>
<td>203</td>
</tr>
<tr>
<td>4 – Bringing It All Together</td>
<td>205</td>
</tr>
<tr>
<td>Introduction</td>
<td>207</td>
</tr>
<tr>
<td>Commercial Centers</td>
<td>207</td>
</tr>
<tr>
<td>Corporate & Employment Centers</td>
<td>209</td>
</tr>
</tbody>
</table>
Table of Contents

Major Residential Subdivisions ... 211
Streetscapes ... 212
Land Development Review Checklist ... 215

5 – Resources .. 217

Introduction .. 219
Land Development Process ... 220
 Sketch Plan ... 220
 Sketch Plan Review .. 220
 Preliminary Plan Review .. 220
 Traffic Studies .. 221
Coordination With PennDOT ... 221
 Determining Roadway Ownership .. 221
 Access/Highway Occupancy Permits .. 222
Coordination with Other Municipalities ... 223

Tools for Multi-modal Transportation Planning 224
 Access Management and Corridor Studies .. 224
 Bicycle/Pedestrian Mobility Plans .. 225
 Circulation Element of a Comprehensive Plan 225
 Greenways/Open Space & Recreation/Trails Plan 226
 Municipal or Area Wide Traffic Studies .. 226
 Official Map ... 227
 Traffic Impact Studies ... 228
 Traffic Impact Fee Studies ... 230
 Pennsylvania Transportation Partnership Act (Act 47) 231
 Public Private Transportation Partnerships (Act 88) 233
 Zoning Ordinance ... 234
 Subdivision and Land Development Ordinance 237
Bibliography ... 239
chapter one

Introduction
Introduction

Purpose
This handbook is intended to provide municipal officials, planners, traffic consultants, designers, land owners and developers with a consolidated reference guide on how to accommodate all modes of transportation into land use/land development design. The information, references and recommendations in this handbook have several applications:

• Help municipal officials establish policy level direction for their communities.
• Identify commonly accepted design standards to provide continuity in development.
• Provide technical information on matters which can be incorporated into ordinances or can be used for traffic related studies.
• Help planners, engineers or developers in preparing site plans that recognize and accommodate this integration.
• Help municipal officials and the Pennsylvania Department of Transportation (PennDOT) on matters concerning the review of the circulation aspects of land developments.
• Provide a resource to CCPC in the review of subdivision and land development applications.

How to use the handbook
The research effort which led to the publication of the original Circulation Handbook published in 1994 (for which this document is an update) consisted of a compilation of information from approximately 100 resources and from interviews with representatives from PennDOT, Southeastern Pennsylvania Transit Authority (SEPTA), New Jersey Department of Transportation, the Delaware Valley Regional Planning Commission (DVRPC), Chester County offices, municipal officials and emergency service providers.

While a considerable amount of qualitative and quantitative information is provided in this handbook, it is not practical or feasible to provide all relevant material on land use and circulation in one source. Throughout the handbook the user is referred to primary resources for additional information.

This handbook attempts to quantify and illustrate the range and diversity of information on the subject of circulation as it relates to land development. Throughout the handbook, the Chester County Planning Commission provides recommendations on policy and technical matters.
These recommendations are intended to reflect applications which the County Planning Commission believes are appropriate for the communities of Chester County. Municipal officials should review the information provided, evaluate the range of standards and criteria, consider the various recommendations and decide on applications appropriate to the local condition. The users of the handbook are urged to consider all of the perspectives identified.

Chapter 2: Principles presents policy level, qualitative information that establishes the framework for land development and circulation improvements. The top principles are derived from the concepts of multimodality, sustainability, and appropriateness for both the community and the human scale. These planning principles drive the contents of the categories and individual design elements described in Chapter 3 and are intended to guide future land developments in Chester County.

Chapter 3: Design Elements provides quantitative guidance by describing and detailing the individual design elements to be considered in the design stage of any development which impacts the circulation system. A simple format is followed for each design element. Following the name of the element, a definition is provided along with the applicable standards, comments and specific recommendations from the Chester County Planning Commission on which standards to use or how criteria should be applied. Hyperlinks to the original and other outside reference sources from which the recommendation was derived accompany most of the design elements.

Chapter 4: Bringing It All Together depicts a number of typical development scenarios where many of the design elements described in Chapter 3 may be applied in the same context. This chapter illustrates how the application of multiple design elements can significantly improve the function and aesthetics of any proposed development towards long term sustainability. A Land Development Review Checklist provides a quick reference regarding the applicability of certain design elements based on the location and/or size of the proposed development.

Chapter 5: Resources includes Tools for Circulation Planning which provides brief summaries of how various planning programs, plans, studies and ordinances can be applied in a comprehensive manner to improve the integration of land use and transportation. All outside publications and resources that were used to compile this Multimodal Handbook are included in a bibliography at the end of Chapter 5.

The over-riding objective of this handbook is to provide a tool which can be used to create a balance between accommodating transportation needs in the County and protecting and preserving the environment.
chapter two

Principles
Principles

This chapter addresses the high level planning principles and policies that provide the framework for new land development in Chester County. Planning principles are the desired goals while the design concepts are the means to achieve the goals. From these principles and concepts, actual design is accomplished through more quantifiable, measurable design elements which are discussed in Chapter 3 ‘Design Elements’.

Principles and design concepts must be considered throughout the plan development process – before a design is started, during the design process, and in the final review of a plan. If correctly applied, principles and concepts can lead to a properly functioning circulation system which is compatible with existing and future land uses.

"Automobile dependency refers to transportation and land use patterns that favor automobile travel and provide relatively inferior alternatives. Its opposite, multimodalism, refers to a transport system that offers users diverse transport options that are effectively integrated, in order to provide a high degree of accessibility even for non-drivers."
- Todd Litman, Multi-Modal Transportation Planning, Victoria Transport Policy Institute, 2014

Multimodal planning gives recognition to the fact that planners, engineers, developers and public officials must find alternative means of dealing with existing and future traffic problems. Experiences across the country point to the need to manage the demand for travel through: ride-sharing, altering work trip patterns, expanding opportunities for modes of travel other than the automobile and managing access on existing roads. Addressing the circulation side of the problem is not the only approach. The integration of land use and transportation planning within a community can lead to fewer vehicular trips, a safer circulation network and more attractive surroundings.

Effective and responsible planning for a community is based on careful considerations of laws and regulations, planning principles, design concepts, design elements and coordination among all parties involved with development and circulation. The same considerations can be applied to individual land developments. One of the foundations of successful
land development is the proper accommodation of multimodal circulation within the development, at all access points to the development, and along the adjacent roads which serve the development. A properly functioning multimodal circulation system leads to more desirable, marketable developments and more viable communities.

Establishing the Policy Framework

LANDSCAPES2
Landscapes2 is Chester County’s comprehensive policy plan. It has brought together growth management and preservation strategies. It has guided municipalities, developers, preservationists, and many others in setting priorities for where and how our county grows—including both how to revitalize our urban centers and small towns and how best to protect our natural, rural, and historic heritage.

Landscapes2 states the following regarding land use, transportation, and multimodal facilities:

“Land use and transportation interact in dynamic fashion, where land use policy affects transportation behaviors and transportation policy affects land use behaviors. It is the management of this relationship that is transportation planning.

and

No single travel mode will accommodate our needs. A sole reliance on the automobile has limitations and costs. Transit options are needed in most communities, along with facilities for bicyclists and pedestrians.”
The concept of “livable landscapes” provides a framework for protection and growth strategies within Chester County. The Livable Landscapes map serves as a guide for accommodating expected future growth while maintaining the quality of life in the county.

The Landscapes2 System-wide transportation policy (T 1.4) regarding land use:

T 1.4 Integrate – Coordinate the regulation, enhancement, and impacts of land use and transportation to effectively promote sustainable transportation choices and behaviors.

 T 1.4a Encourage appropriate and supportive land uses, density, and site designs that reduce vehicular dependency, encourage public transportation, and provide bicycle and pedestrian mobility.

 T 1.4b Encourage increased development density where supportive transportation infrastructure exists.

 T 1.4c Promote a corridor-planning approach to integrate transportation investments and land use policies.
Multimodal Transportation Corridors

Landscapes2 states the following:

“The foundation of a “system-wide” approach to transportation planning is close coordination of various transportation modes and the surrounding land uses that are served and supported. The map (below) highlights this critical relationship between transportation infrastructure and the identified growth area, particularly urban and suburban centers. The major multi-modal corridors encompass key roadways, active rail lines, passenger rail stations, bus routes, regional trails, airports and the PA Turnpike interchange. These corridors are priorities for maintaining and investing in our transportation system to support efficient movement of people and goods.”

Multimodal Transportation Corridors

Source: Landscapes2
Public Transportation Plan
In July of 2014, the Chester County Commissioners adopted the Public Transportation Plan as an element to Landscapes2. This plan was structured around three main categories of issues concerning public transportation: the SYSTEM (everything that is operating or ‘rolling’ such as bus routes, commuter rail services, etc.), the ENVIRONMENT (all points of access to the system, including rail stations, transportation centers, bus stops), and the EXPERIENCE (reflected by everyone that utilizes the public transportation system).

The category whereby Chester County will have the most direct influence in improving public transportation services is within the realm of the built ENVIRONMENT. The plan’s ENVIRONMENT goal is to:

“Provide a first class, barrier-free and multimodal means of transport from trip origin to trip destination.”

One of the objectives towards achieving that goal is to encourage local growth area municipalities and engage developers in the creation and adoption of ordinances to provide for the integral development of transit related facilities and/or land uses.

PennDOT Smart Transportation
The New Jersey Department of Transportation (NJDOT) and the Pennsylvania Department of Transportation (PennDOT) jointly prepared and published their Smart Transportation Guidebook in March 2008. Its focus is to guide the development of non-limited access roads as context sensitive roadways, with the goal of creating transportation facilities that work well for all users, are affordable, and support smart growth community planning goals.
Chapter 2
Principles

The following are the Smart Transportation Principles as published in the Guidebook:

1. Tailor solutions to the context;
2. Tailor the approach;
3. Plan all projects in collaboration with the community;
4. Plan for alternative transportation modes;
5. Use sound professional judgment; and,
6. Scale the solution to the size of the problem.

These principles constitute the basic philosophy of providing for a ‘context sensitive’ design. Notably, the Smart Transportation Guidebook introduce context sensitive engineering (where land use context changes the roadway design). Following the 2008 publication, these land use considerations were incorporated into PennDOT’s design manuals.

The land use contexts described in the Smart Transportation Guidebook from least to most developed are as follows:

1. Rural.
2. Suburban Neighborhood.
3. Suburban Corridor.
4. Suburban Center.
5. Town/Village Neighborhood.
6. Town/Village Center.
7. Urban Core.

The contexts from Suburban Neighborhood (2) to Urban Core (7) correlate to the Landscapes2 Growth Areas, with Rural being synonymous in both publications.

Top Principles

The following are the principles towards which this Multimodal Handbook intends to guide future land developments in Chester County:

Create pedestrian-oriented experiences and design to the human scale.
Providing for a pleasant environment that any person would experience should be a guiding principle in the planning, design, and construction of all new developments and/or redevelopments. Universal accessibility, building placement, mode separation, landscaping, signage, noise mitigation, and the creation of outdoor spaces play a major role in contributing to the aesthetics and human experience and thus the success of any development.
Integrate development as part of the community fabric. Land developments should consider not only the site specific conditions for design and implementation, but also how these developments can contribute to the community within which they are placed. Developments should be considered as part of the community building process rather than simply stand-alone projects.

Provide for all transportation modes. The transportation system is not exclusive to the automobile and should provide opportunities for bicyclists, pedestrians and public transit. Roadways should be designed to accommodate public transportation which would assist traffic flow and capacity. Public transportation facilities connect high-density population and employment centers where cost effective and help to reduce highway congestion and improve air quality by reducing the number of trips made by single occupant vehicles. Clearly defined pedestrian routes should be provided between residential, commercial and office developments and public transit facilities such as bus stops, rail stations, and transportation centers. Pedestrian and bicycle linkages should be created throughout and between all major developments since they serve as both transportation and recreation resources that contribute to bettering the community’s overall health and well-being. Consideration for all of these modes will provide for a true multimodal transportation system in Chester County.

Incorporate sustainable design features. Site development should be designed to provide for long term sustainability and minimize the impacts to the natural environment. Roadways and parking lots are the biggest contributor towards stormwater runoff causing erosion and the inflow of chemicals such as road salts and de-icing agents that impact water quality in Chester County’s waterways. While many best management practices infiltrate and/or treat stormwater before being discharged into local streams, minimizing the development footprint which includes not only the creation of new impervious surfaces but for all earth disturbance activity associated with land development would reduce this increased runoff at its source. In most cases, making roadways and site developments more compatible with their natural settings and avoiding impacts to wetlands, floodplains, forests, wildlife habitats, and other natural areas is the best way to apply this principle.

Accommodate future growth. Enough highway and intersection capacity should be provided through ultimate rights-of-way to accommodate peak hour demand from new land developments and preserve the future capacity and safety of arterial and collector roads. Municipalities and developers within growth areas should incorporate bus and other transit design concepts within subdivision and land development proposals to accommodate the future use of public transportation. High-density housing and employment centers should be located near established public transportation routes and centers. Adjacent developments should be interconnected to reduce the amount of vehicular, pedestrian or bicycle trips accessing arterial and collector roads for local circulation.
The land use context can vary significantly along the roadway regardless of the roadway’s functional class. While PA 10 is a minor arterial in all three examples, one can see how the land use context varies along PA 10 in Chester County. The transportation design of PA 10 adjusts to the land use context. This is a key evolution of transportation engineering over the last decade: design for the context. This approach results in improved accommodations for all modes and a more context sensitive design.

Defining the Context

STEP 1: Determine Land Use Context

The location of the proposed development relative to the Landscapes2 livable landscapes will have a bearing on various design guidelines as denoted in the Chapter 3 Design Elements. Please refer to the Livable Landscapes Map found on page 15 to determine if the proposed development is located within a Growth Area or a Rural Resource Area.
STEP 2: Determine Roadway’s Functional Classification

Roadway functional classification is an important land use and transportation planning tool that establishes a hierarchy of roads based on use relating to mobility and access. As a tool, functional classification provides a basis for the integration of land use and transportation through road design, access design and all relevant land use ordinances.

The overriding principle that guides the integration of land use and circulation is the need to establish and maintain a hierarchy of roads based on intended function. This is what is generally referred to as highway functional classification. Roadways serve two basic functions—mobility and access. Mobility is defined as the ability to carry traffic and is measured by volume, speed and trip length. Access is defined as the ability to move traffic to and from abutting land uses.

There is a fundamental incompatibility between mobility and access. Access to adjacent parcels generally inhibits or restricts the ability of a road to carry high volumes at high speeds. Conversely, high-speed traffic is incompatible and disruptive on roads such as residential streets which are primarily intended to provide access to abutting properties. Roadways fail when the design and use are not compatible with the intended function. For example, if a major road is intended to carry high volume, high speed traffic, but the adjacent properties are developed with an excessive number of access points, the conflict between mobility and access will result in higher accident rates and increased congestion.

Examples of roadways and their functional classification.
The classification that was established by the Chester County Planning Commission followed an eight-step process that led to adoption by the Planning Commission in 2003. The adoption focused on a map of the classification and a table of specific variables and criteria that was used to define and delineate the classification. The eight step process and table of specific variables, along with mapping of the entire county designating the functional class of each roadway may be found in the Road Functional Classification Technical Memorandum, published by the Planning Commission in June 2004.

The adopted classification is comparable in scale to the classifications set at the regional, state and national levels. About 3 percent of the network mileage in the County consists of expressways. The arterials represent almost 10 percent of the mileage. Collectors represent about 20 percent of the mileage. The bulk of the mileage (over 2/3) consists of local roads, which in this context refers to their function and not necessarily ownership.

Approximately 12 percent of the road mileage carries 70 percent of the traffic. This relates to the circulatory analogy where the expressway and arterials are the lifeblood of the network.

In terms of the relationship of the functional classification to Landscapes2, the County’s comprehensive policy plan, there is a strong nexus between the function of the major roads and their impact on the growth areas in the plan and on the preservation areas.
The following exhibit illustrates select criteria and variables associated the functional classifications and how those criteria and variables differ between the Landscapes2 Growth Areas and Rural Areas:

Chester County Planning Commission Road Functional Classification—Variables and Criteria

<table>
<thead>
<tr>
<th>Variables</th>
<th>Expressway</th>
<th>Major Arterial</th>
<th>Minor Arterial</th>
<th>Major Collector</th>
<th>Minor Collector</th>
<th>Local Distributor</th>
<th>Local</th>
</tr>
</thead>
<tbody>
<tr>
<td>Daily Traffic Volume Range (1)</td>
<td>15,000 to over 100,000 vehicles</td>
<td>10,000–60,000 vehicles</td>
<td>8,000–20,000 vehicles</td>
<td>4,000–10,000 vehicles</td>
<td>1,000–5,000 vehicles</td>
<td>Less than 1,500 vehicles</td>
<td>Less than 1,000 vehicles</td>
</tr>
<tr>
<td>Mobility</td>
<td>Strict priority to moving vehicles</td>
<td>Mobility more critical than property access</td>
<td>Mobility more critical than property access</td>
<td>Even priority to mobility and access</td>
<td>Even priority to mobility and access</td>
<td>Access more important than mobility</td>
<td>No priority to mobility</td>
</tr>
<tr>
<td>Access</td>
<td>Only at interchanges</td>
<td>Strict median access control</td>
<td>Some control of property access</td>
<td>All roads and properties have access</td>
<td>All roads and properties have access</td>
<td>Priority is given to property access</td>
<td>Priority is given to property access</td>
</tr>
<tr>
<td>Corridor Length</td>
<td>Over 15 miles</td>
<td>Over 15 miles</td>
<td>Over 10 miles</td>
<td>4–15 miles</td>
<td>2–10 miles</td>
<td>Less than 4 miles</td>
<td>Less than 2 miles</td>
</tr>
<tr>
<td>Connections (Relationship to LANDSCAPES)</td>
<td>Connects states, regions, counties, cities and landscapes urban centers</td>
<td>Connects regions, counties and multiple landscapes centers</td>
<td>Connects multiple landscapes centers and villages, primarily intra-county trips</td>
<td>Connects landscapes centers and villages, primarily intra-county trips</td>
<td>Connects villages and multiple neighborhoods primarily inter-municipal trips</td>
<td>Links individual properties to distributors and collectors</td>
<td></td>
</tr>
<tr>
<td>Truck Traffic</td>
<td>Highest truck mobility</td>
<td>High truck mobility</td>
<td>High truck mobility</td>
<td>Moderate truck mobility</td>
<td>Moderate truck mobility</td>
<td>Local delivery only</td>
<td>Local delivery only</td>
</tr>
<tr>
<td>Basic Geometry and Design</td>
<td>Wide lanes and shoulders; medians; more than 2 through lanes</td>
<td>Wide lanes and shoulders; occasional median; turning lanes</td>
<td>Two lanes; no medians; limited turning lanes</td>
<td>Two lanes; no medians; limited turning lanes</td>
<td>Narrow Lanes</td>
<td>Narrow Lanes</td>
<td></td>
</tr>
<tr>
<td>On-Street Parking</td>
<td>Prohibited</td>
<td>Only in urban areas</td>
<td>Only in urban areas</td>
<td>Discouraged outside "centers"</td>
<td>Discouraged outside "centers"</td>
<td>Limited use outside "centers"</td>
<td>Appropriate on selected streets</td>
</tr>
<tr>
<td>Through Traffic (2)</td>
<td>Over 50%</td>
<td>Over 50%</td>
<td>Over 50%</td>
<td>25–50%</td>
<td>25–50%</td>
<td>Less than 25%</td>
<td>Less than 10%</td>
</tr>
<tr>
<td>Vehicle Speed (Posted)</td>
<td>55–65 mph</td>
<td>40 mph minimum</td>
<td>35–55 mph</td>
<td>35–55 mph</td>
<td>35–55 mph</td>
<td>Less than 45 mph</td>
<td>Less than 35 mph</td>
</tr>
<tr>
<td>Bicycle Pedestrian Access</td>
<td>Only through separate facilities</td>
<td>Specially designed facilities</td>
<td>Adjacent facilities and crossings</td>
<td>Adjacent facilities and crossings</td>
<td>Adjacent facilities and crossings</td>
<td>High priority to bike and pedestrian access</td>
<td>High priority to bike and pedestrian access</td>
</tr>
</tbody>
</table>

(1) Wide range of traffic volumes accounts for differences between urban, suburban, and rural areas.
(2) Through traffic has no origin or destination in the immediate neighborhood, community, village or center.

Source: Adopted by Chester County Planning Commission, 2003
Functional Classification Maps with Growth Areas
Chapter 2
Principles

Northeast Section

Road Functional Classification
- Expressway
- Major arterial
- Minor arterial
- Major collector
- Minor collector
- Local distributor
- Local

Growth area
Southwest Section

Road Functional Classification

- Expressway
- Major arterial
- Minor arterial
- Major collector
- Minor collector
- Local distributor
- Local
- Growth area
STEP 3: Translate between CCPC and PennDOT Terminology

The following chart provides the translation key between the Planning Commission’s Highway Functional Classification and Landscapes2: Livable Landscapes and the PennDOT Smart Transportation highway classification and land use contexts, with examples of such roadways located in Chester County:

Translation of CCPC Landscapes2 & Highway Functional Classification to PennDOT Smart Transportation Guidelines

<table>
<thead>
<tr>
<th>Chester County Planning Commission</th>
<th>Landscapes2</th>
<th>Urban</th>
<th>Suburban Center</th>
<th>Suburban</th>
<th>Rural Center/ Villages</th>
<th>Rural</th>
<th>Ag</th>
</tr>
</thead>
<tbody>
<tr>
<td>Highway Functional Classification</td>
<td>PennDOT Smart Transportation</td>
<td>Town/Village Center & Neighborhood</td>
<td>Suburban Center</td>
<td>Suburban Corridor & Neighborhood</td>
<td>Town/Village Center</td>
<td>Rural</td>
<td>Rural</td>
</tr>
<tr>
<td>Expressway</td>
<td>Expressway</td>
<td>US 202, US 30, US 1, PA Turnpike</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Major Arterial</td>
<td>Regional Arterial</td>
<td>PA 3 – West Chester; PA 252 – Paoli</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Suburban</td>
<td>PA 100 – Exton; PA 41 – London Grove</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Collector</td>
<td>PA 3 – E/W Goshen; US 322 – E Brandywine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minor Arterial</td>
<td>Community Arterial</td>
<td>PA 10 – Honey Brook; PA 82 – Kennett Sq</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Suburban</td>
<td>PA 796 – Jennersville; PA 29 – Great Valley</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Collector</td>
<td>PA 352 – E Goshen; PA 401 – W Pikeland</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Major Collector</td>
<td>Community Collector</td>
<td>PA 82 – Elerson; PA 113 – Phoenixville</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Suburban</td>
<td>PA 162 – E Brandywine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Collector</td>
<td>PA 162 – Marshallton; PA 272 – Spring City</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minor Collector</td>
<td>Collector Neighborhood</td>
<td>Rosedale Av – W Chester; Warren Av – Malvern</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Suburban</td>
<td>PA 162 – Warwick; PA 345 – Fairview Rd – E Nantmeal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Collector</td>
<td>PA 162 – Unionville</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Local Distributor</td>
<td>Local</td>
<td>GO Carlson Blvd – Caln; Waterloio Rd – Devon</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Suburban</td>
<td>Hillendale Rd – Kennett; Greenhill Rd – W Goshen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Collector</td>
<td>St. Peters Rd – Warwick; PA 345 – Warwick</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Local</td>
<td>Local</td>
<td>Liberty Blvd – Great Valley; Shoen Rd – W Whiteland</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Suburban</td>
<td>Concord Rd – Westtown; Pleasant Grove Rd – Westtown</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Collector</td>
<td>Appleton Rd – Franklin; Nanteal Rd – E Nantmeal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

STEP 4: Apply Design Criteria

Please use the land use context and the functional classification of the roadway(s) that will serve as the development's primary point(s) of access to determine the applicability of the design elements described in Chapter 3 towards the proposed development.
(Page intentionally left blank)
chapter three

Design Elements
Introduction

While planning principles and design concepts provide a framework for the integration of land use and transportation planning, the application of principles and concepts is accomplished through specific, quantifiable design elements. The purpose of this chapter is to identify, describe and quantify the more significant design elements which need to be considered in the planning and design stages.

The design elements are arranged into the following categories:

- Bicycle/Pedestrian Circulation;
- Public Transportation;
- Infrastructure/Amenities; and,
- Vehicular Circulation.

The Chester County Planning Commission recommends that users of this handbook review in further detail the source documents associated with the recommended standards where applicable for better integration with the site specific conditions particular to the development being proposed. The design criteria and guidelines presented in this chapter generally represent minimum values that imply the lowest possible limit in design. However, it is the responsibility of each user to exercise and utilize values exceeding the minimum values wherever practical and within reasonable economic limitations and sound engineering judgment. Variations from what is presented in this chapter may be required for special or unusual conditions. In some cases, the additional resources listed outside of the recommendation may be more applicable pending on those unique site specific conditions.
BICYCLE/PEDESTRIAN

Bicycle Facilities

Bicycle facilities are vital components in a community’s transportation system. An established bicycling network can reduce traffic congestion and pollution by providing alternate means to vehicular travel. They also provide recreational opportunities which encourage healthy lifestyles and thus enhance the quality of life within a community.

Bicycling is a very quick, convenient, and healthy way for adults and teenagers to make trips of up to 3-5 miles in reasonably good weather. Nationally, approximately 57% of all automobile trips are five miles or less in length and nearly 1/3 are two miles or less. Given these high percentages of short trips, bicycling should be a significant way to reduce dependence on the automobile for short commutes, errand running, social visits, etc. But today, bicycling accounts for a statistically insignificant percentage of transportation oriented trips in Chester County. Why is the bicycle not used for transportation in Chester County and what can be done to increase the number of people bicycling for transportation?

The AASHTO Guide for the Development of Bicycle Facilities states that “Bicycling is a healthy, low cost mode of travel that is available to nearly everyone. Bicycling is also one of the most energy-efficient forms of transportation available. Since bicycling emits no pollution, needs no external energy source, and uses land efficiently, it effectively moves people from one place to another without adverse environmental impacts.”

"Bicycle facilities" can be located both within and outside of roadway right-of-ways. Within roadway rights-of-way, there are either bicycle lanes or cycle tracks that provide dedicated space for bicyclists, or there are 'share the road' routes that typically include improved shoulders, signage, and sometimes pavement markings. Outside the roadway, bicycle facilities are commonly referred to as "trails" and are typically "Shared Use" or "Multi-Use" facilities where cyclists share the facility with pedestrians and other non-motorized modes of travel, such as equestrians, cross country skiers, rollerbladers, skateboarders, baby strollers, and those using motorized scooters and wheelchairs. See also the SHARED USE FACILITIES design element.

Bicyclist User Groups

Defining the type of users and facilities is an important basis for bicycle and pedestrian planning. The following description of cyclists and facilities is primarily based upon PennDOT’s Design Manual 2 – Chapter 16: Bicycle Facilities and the AASHTO Guide for the Development of Bicycle Facilities.
Chapter 3
Design Elements

BICYCLE/PEDESTRIAN

AASHTO categorizes bicyclists into the following categories relative to user skill and comfort level:

- ** Experienced and Confident ** – This group includes bicyclists who are comfortable riding on most types of bicycle facilities, including roads without any special treatments for bicyclists. This group also includes utilitarian and recreational riders of many ages who are confident enough to ride on busy roads and navigate in traffic to reach their destination. However, some may prefer to travel on low-traffic residential streets or shared use paths. Such bicyclists may deviate from the most direct route to travel in their preferred riding conditions. Experienced bicyclists may include commuters, long-distance road bicyclists, racers, and those who regularly participate in rides organized by bicycle dubs.

- ** Casual and Less Confident ** – This group includes a majority of the population, and includes a wide range of people: (1) those who ride frequently for multiple purposes; (2) those who enjoy bicycling occasionally but may only ride on paths or low-traffic and/or low-speed streets in favorable conditions; (3) those who ride for recreation, perhaps with children; and (4) those for whom the bicycle is a necessary mode of transportation. In order for this group to regularly choose bicycling as a mode of transportation, a physical network of visible, convenient, and well-designed bicycle facilities is needed. People in this category may move over time to the "experienced and confident" category.

<table>
<thead>
<tr>
<th>Experienced/Confident Riders</th>
<th>Casual/Less Confident Riders</th>
</tr>
</thead>
<tbody>
<tr>
<td>Most are comfortable riding with vehicles on streets, and are able to navigate streets like a motor vehicle, including using the full width of a narrow travel lane when appropriate and using left-turn lanes.</td>
<td>Prefer shared use paths, bicycle boulevards, or bike lanes along low-volume, low-speed streets.</td>
</tr>
<tr>
<td>While comfortable on most streets, some prefer on-street bike lanes, paved shoulders, or shared use paths when available.</td>
<td>May have difficulty gauging traffic and may be unfamiliar with rules of the road as they pertain to bicyclists; may walk bike across intersections.</td>
</tr>
<tr>
<td>Prefer a more direct route.</td>
<td>May use less direct route to avoid arterials with heavy traffic volumes.</td>
</tr>
<tr>
<td>Avoid riding on sidewalks. Ride with the flow of traffic on streets.</td>
<td>If no on-street facility is available, may ride on sidewalks.</td>
</tr>
<tr>
<td>May ride at speeds up to 25 mph on level grades, up to 45 mph on steep descents.</td>
<td>May ride at speeds around 8 to 12 mph.</td>
</tr>
<tr>
<td>May cycle longer distances.</td>
<td>Cycle shorter distances: 1 to 5 miles is a typical trip distance.</td>
</tr>
</tbody>
</table>

Source: AASHTO
Shared Roadway

A shared roadway (shown below) accommodates bicyclists and motorists in the same travel lane. Currently, this arrangement is the most prevalent bicycle facility in the Region.

Wide outside travel lanes, with widths of 12’ to 15’ depending on the roadway context (e.g., rural or urban) are desired for shared lane facilities. A shared lane can be supplemented with “Share the Road” signage.

A paved shoulder or wide curb lanes provide accommodation for bicyclists adjacent to the vehicle travel lanes. Paved shoulders can be located on urban or rural roadways with moderate to high vehicular traffic volumes and moderate to high posted speeds. Paved shoulders for bicyclists range in width from 4’ to 6’+ depending on the available pavement width and can be supplemented with ‘Share the Road’ signage.

SHARED ROADWAY

(limited or no shoulder)
A street which accommodates bicyclists and motorists in the same travel lane. Typically the travel lanes are wider than what would be designed for automobile traffic only for the associated functional classification of the road and its context. Shared roadways may be a Signed Bike Route or include other indicators such as Share the Road Signs, Sharrows, or other pavement markers.
Chapter 3
Design Elements

BICYCLE/PEDESTRIAN

SHARED ROADWAY
(paved shoulder) - A street with a paved shoulder or wide curb lane that accommodates bicyclists adjacent to the vehicle travel lanes. A minimum four (4) foot shoulder is preferable, in conjunction with applicable municipal and PennDOT guidelines. Shared Roadways with paved shoulders may be a Signed Bike Route or include other indicators such as Share the Road Signs, Sharrows, or other pavement markers.

SHARE THE ROAD SIGNAGE
Supplemental signage added to a shared roadway to warn motorists of the increased likelihood of bicyclists.

Paved shoulders are separated from travel lanes by the striping representing the outside edge of the outermost travel lane. The maintenance of paved shoulders via street sweeping is important for their success, as roadway debris, cinders, and tree limbs typically accumulate in this area of the cartway.

Shared Roadway Signage
Since 2005, PennDOT’s Chester County Maintenance Office coordinated with the Chester County Planning Commission and Chester County Cycling Coalition on the most appropriate locations for Share the Road signage within Chester County along on-road bike routes.
Sharrow

The 2009 edition of the Manual on Uniform Traffic Control Devices (MUTCD) included a new pavement marking called a “sharrow”. Sharrows increase driver awareness of shared roadway arrangements, similar to the advisory treatment of Share the Road signage. PennDOT requires that municipalities are responsible for maintenance of ‘sharrow’ pavement markings.

![Sharrow example in Washington, DC. Photo by Richard Layman.](image)

The following resources provide general guidance regarding the placement of sharrows in the roadway:

- The Philadelphia Mayor’s Office of Transportation and Utilities (MOTU): *New Sharrows in Philadelphia*.
- *Chapter 9C* of the Manual on Uniform Traffic Control Devices (MUTCD) regarding placement of markings.

Signed Bike Routes

Signed bicycle routes are treatments used to designate a preferential bicycle routing and provide wayfinding guidance to cyclists. AASHTO states that the “signing of shared roadways indicates to cyclists that there are particular advantages to using these routes compared to alternate routes”.

Route signs can provide directional, distance, and destination information to assist bicyclists in navigation. Signed routes can direct cyclists to corridors that have existing on-road facilities, or access locations for off road facilities.

Within the Region, the Bicycle PA Route L, which runs along Creek Road and US 322, is a type of signed bicycle route. The Bicycle Route L is a
Chapter 3
Design Elements

BICYCLE/PEDESTRIAN

BICYCLE BOULEVARD
A street corridor treatment that prioritizes and enhances bicycle travel through the installation of traffic calming measures, signs, pavement markings, and crossing improvements. These facilities are typically located on roadways with low traffic volumes which are suitable for bicycle travel.

BICYCLE LANE
(a striped travel lane for bicycles) - Designated travel lanes within the cartway or along the road shoulder for exclusive use by bicyclists. Bike lanes typically involve a combination of supplemental indicators including but not limited to Share the Road Signs and other pavement markings.

Bicycle Boulevard
Bicycle boulevards are not included in the PennDOT Design Manual; however, a Bicycle Boulevard Guidebook was recently released by the Initiative for Bicycle and Pedestrian Innovation at the Center for Transportation Studies. The guidebook provides direction on selecting routes and the application of design elements.

Bicycle Lanes
Bike lanes are typically located on roadways in urban and suburban settings with moderate to high vehicular traffic volumes and moderate to high posted speeds. PennDOT’s Design Manual requires a formal bike lane to be a minimum 5’ width with application of pavement striping, markings, and regulatory signage.

Bicycle lane facilities should be oriented for one-way operation and carry bicycle traffic in the same direction as motor vehicles.
Cycle Track

A cycle track facility is an exclusive facility for bicyclists that combines design aspects of bike lanes and shared use trails/sidepaths. See also the ‘Multi-Use Trail’ within the SHARED USE FACILITIES design element.

Cycle tracks are constructed within an existing cartway, but buffered from the vehicle lanes by curbing or on-street, parallel parking. Existing cycle track facilities have been designed for both one-way and two-way operations. For more information, see Alta Planning & Design’s *Cycle Tracks: Lessons Learned* and the *NACTO Urban Bikeway Design Guide*.

CYCLE TRACK

Travel lane for non-motorized vehicles with a physical barrier to other traffic. These may be designed for one-way or two-way travel.
Recommendations

General Conditions for Selecting Different Bikeway Types

<table>
<thead>
<tr>
<th>Type of Bikeway</th>
<th>Best Use</th>
<th>Motor Vehicle Design Speed</th>
<th>Traffic Volume</th>
<th>Classification or Intended Use</th>
<th>Other Considerations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shared lanes (no special provisions)</td>
<td>Minor roads with low volumes, where bicyclists can share the road with no special provisions.</td>
<td>Speeds vary based on location (rural or urban).</td>
<td>Generally less than 1,000 vehicles per day.</td>
<td>Rural roads, or neighborhood or local streets.</td>
<td>Can provide an alternative to busier highways or street. May be circuitous, inconvenient, or discontinuous.</td>
</tr>
<tr>
<td>Shared Lanes (wide outside lanes)</td>
<td>Major roads where bike lanes are not selected due to space constraints or other limitations.</td>
<td>Variable. Use as the speed differential between bicyclists and motorists increase. Generally any road where the design speed is more than 25 mph.</td>
<td>Generally more than 3,000 vehicles per day.</td>
<td>Arterials and collectors intended for major motor vehicle traffic movements.</td>
<td>Explore opportunities to provide marked shared lanes, paved shoulder, or bike lanes for less confident bicyclists.</td>
</tr>
<tr>
<td>Marked shared lanes</td>
<td>Space-constrained roads with narrow travel lanes, or road segments upon which bike lanes are not selected due to space constraints or other limitations.</td>
<td>Variable. Use where the speed limit is 35 mph or less.</td>
<td>Variable. Useful where there is high turnover in on-street parking to prevent crashes with open car doors.</td>
<td>Collectors or minor arterials.</td>
<td>May be used in conjunction with wide outside lanes. Explore opportunities to provide parallel facilities for less confident bicyclists. Where motor vehicle allowed to park along shared lanes, place markings to reduce potential conflicts with opening car doors.</td>
</tr>
</tbody>
</table>
General Conditions for Selecting Different Bikeway Types (continued)

<table>
<thead>
<tr>
<th>Type of Bikeway</th>
<th>Best Use</th>
<th>Motor Vehicle Design Speed</th>
<th>Traffic Volume</th>
<th>Classification or Intended Use</th>
<th>Other Considerations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paved shoulders</td>
<td>Rural highways that connect town centers and other major attractors.</td>
<td>Variable. Typical posted rural highway speeds (generally 40-55 mph).</td>
<td>Variable.</td>
<td>Rural road-ways; inter-city highways.</td>
<td>Provides more shoulder width for roadway stability. Shoulder width should be dependent on characteristics of the adjacent motor vehicle traffic, i.e. wider shoulder on higher speed and/or higher-volume roads.</td>
</tr>
<tr>
<td>Bike lanes</td>
<td>Major roads that provide direct, convenient, quick access to major land uses. Also can be used on collector roads and busy urban streets with slower speeds.</td>
<td>Generally, any road where the design speed is more than 25 mph.</td>
<td>Variable. Speed differential is generally a more important factor in the decision to provide bike lanes than traffic volumes.</td>
<td>Arterials and collectors intended for major motor vehicle traffic movements.</td>
<td>Where motor vehicles are allowed to park adjacent to bike lanes, provide a bike lane of sufficient width to reduce probability of conflicts due to opening vehicle doors and objects in the road. Analyze intersections to reduce bicyclists/motor vehicle conflicts.</td>
</tr>
<tr>
<td>Bicycle boulevards</td>
<td>Local roads with low volumes and speeds, offering an alternative to, but running parallel to, major roads. Still should offer convenient access to land use destinations.</td>
<td>Use where the speed differential between motorists and bicyclists is typically 15 mph or less. Generally, posted limits of 25 mph or less.</td>
<td>Generally less than 3,000 vehicles per days.</td>
<td>Residential roadways.</td>
<td>Typically only an option for gridded street networks. Avoid making bicyclists stop frequently. Use signs, diverters, and other treatments so that motor vehicle traffic is not attracted from arterials to bicycle boulevards.</td>
</tr>
</tbody>
</table>
Chapter 3
Design Elements

BICYCLE/PEDESTRIAN

General Conditions for Selecting Different Bikeway Types (continued)

<table>
<thead>
<tr>
<th>Type of Bikeway</th>
<th>Best Use</th>
<th>Motor Vehicle Design Speed</th>
<th>Traffic Volume</th>
<th>Classification or Intended Use</th>
<th>Other Considerations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shared use path: independent right-of-way</td>
<td>Linear corridors in green-ways, or along waterways, freeways, active or abandoned rail lines, utility rights-of-way, unused rights-of-way. May be a short connection, such as a connector between two cul-de-sacs, or a longer connection between cities.</td>
<td>N/A</td>
<td>N/A</td>
<td>Provides a separated path for non-motorized users. Intended to supplement a network of on-road bike lanes, shared lanes, bicycle boulevards, and paved shoulders.</td>
<td>Analyze intersections to anticipate and mitigate conflicts between path and roadway users. Design path with all users in mind, wide enough to accommodate expected usage. On-road alternatives may be desired for advanced riders who desire a more direct facility that accommodates higher speeds and minimized conflicts with intersection and drive-way traffic, pedestrians, and young bicyclists.</td>
</tr>
<tr>
<td>Shared use path: adjacent to roadways (i.e., side-path)</td>
<td>Adjacent to roadways with no or very few intersections. The path is used for a short distance to provide continuity between sections of path on independent rights-of-way.</td>
<td>The adjacent roadway has high-speed motor vehicle traffic such that bicyclists might be discouraged from riding on the roadway.</td>
<td>The adjacent roadway has very high motor vehicles traffic volumes such that bicyclists might be discouraged from riding on the roadway.</td>
<td>Provides a separated path for nonmotorized users. Intended to supplement a network of on-road bike lanes, shared lanes, bicycle boulevards, and paved shoulder. Not intended to substitute or replace on-road accommodations for bicyclists, unless bicycle use is prohibited.</td>
<td>Several serious operational issues are associated with this facilities type. See Section 5.2.2. and 5.3.4 of the Guide for additional details.</td>
</tr>
</tbody>
</table>
Chapter 3
Design Elements

BICYCLE/PEDESTRIAN

Recommendations (continued)

- Follow the recommendations of PennDOT Design Manual 2 – Chapter 16: Bicycle Facilities and AASHTO’s, Guide for the Development of Bicycle Facilities. Another valuable resource is the NACTO Urban Bikeway Design Guide.

- Dedicated bike lanes should be striped in such a way to address locations where buses may need to approach or leave a curb-side bus stop area that requires crossing the bike lane. This striping would help the bicyclist by indicating the potential presence of a bus at these locations. This striping concept does not appear to be specifically addressed in the Manual on Uniform Traffic Control Devices (MUTCD). This scenario could be addressed by applying dashed lane marking similar to those used to delineate bicycle lanes on the approach of motor vehicle right turn lanes.

- Road diets and the narrowing of vehicular travel lanes should be considered to create space for bicycle lanes and/or increased shoulder widths for share the road facilities.
Municipalities should incorporate planning for bicycle/pedestrian facilities in comprehensive plan updates or amendments, special studies and/or Official Maps.

Municipalities should consider amending their zoning and subdivision and land development ordinances to include definitions for bicycle facilities and clarify these terms across municipal borders. It may also be necessary to delete conflicting definitions and replace wording as appropriate throughout all municipal ordinances and policy documents when they are updated.

Development Process - It is common for municipal officials to place conditions on the approval of subdivision and land development applications. Through negotiation, a municipality can request the installation of bicycle and pedestrian facilities. The Official Map, ordinance requirements, and other planning elements such as a Comprehensive Plan and/or other adopted plans such as a Bike/Ped Mobility Plan or Greenways Plan will identify the need for these facilities so that developers are aware that the municipality will require or would like to implement these facilities when land development applications are submitted.

Municipalities should consider ways to incorporate bicycle parking into ordinances. Ordinances can require a certain amount of parking spaces be dedicated to bicycle parking though the installation of bike racks. See also the BICYCLE PARKING design element.

References

- PennDOT – Bicycle and Pedestrian Information Page http://www.penndot.gov/ProjectAndPrograms/RoadDesignEnvironment/RoadDesign/Bike%20and%20Pedestrian/Pages/default.aspx#.VpfU-rYrJhE
• U.S. DOT – Federal Highway Administration (FHWA): Bicycle and Pedestrian Design Guidance
 http://www.fhwa.dot.gov/environment/bicycle_pedestrian/guidance/design.cfm

• National Association of City Transportation Officials – Urban Bikeway Design Guide http://nacto.org/cities-for-cycling/design-guide/

• FHWA Pedestrian and Bicycle Information Center
 http://www.pedbikeinfo.org/

• FHWA Guidance regarding Bicycle and Pedestrian Facility Design Flexibility
 http://www.chesco.org/DocumentCenter/View/33695

• Chester County Trail and Path Planning Guide
 http://www.chesco.org/DocumentCenter/View/415

• PennDOT Pedestrian Facilities Pocket Guide
 http://www.dot.state.pa.us/public/Bureaus/design/ADA/PocketGuide.pdf
Pedestrian Facilities

Pedestrian facilities serve as the very foundation of the multimodal transportation system. The AASHTO Guide for the Planning, Design, and Operation of Pedestrian Facilities states that “Walking is a fundamental form of transportation that is an integral part of the health and livability of our communities. All travelers are pedestrians at some point during their trip. Some travelers make their entire trip on foot, while others walk to catch the bus, or walk between their parking spaces and the front doors of their destinations. Many people also walk for recreation and exercise.”

Pedestrian facilities reduce traffic congestion and pollution by providing alternate means to vehicular travel. They also provide recreational opportunities that encourage healthy lifestyles and enhance the quality of life within a community.

This "Pedestrian Facilities" design element refers to walkways, sidewalks, and crosswalks that are to be exclusively used by pedestrians.

Sidewalks

PennDOT’s Design Manual 2 – Chapter 6: Pedestrian Facilities and the Americans with Disabilities Act (ADA) requires sidewalks to be a minimum of 5 feet in width. This is to comply with the ADA requirement for periodic passing spaces of 5 feet in width thus allowing the entire length of the sidewalk to provide for these spaces.

Title 75 of Pennsylvania’s Consolidated Statute prohibits bicycling on sidewalks within business districts, unless expressly permitted by regulatory signage. Planning guidance by PennDOT and AASHTO discourages bicycling on sidewalks, except in the case of young children or in unique circumstances, such as bridges with travel lanes too narrow to safely accommodate bicycle travel.

An active sidewalk/streetscape in West Chester Borough.
The Smart Transportation Guidebook states that “the most fundamental action that can be taken by any municipality to improve pedestrian facilities is to amend its land development ordinance to require the installation of sidewalks for new and redeveloped land uses.” The Guidebook further states: “In suburban areas, developers have routinely requested waivers from sidewalk requirements, typically on the grounds that any anticipated pedestrian activity would be minimal. With few exceptions, this should not justify a waiver, given piecemeal suburban development patterns and the constant potential for redevelopment with more intensive uses.”

Recommendations

Pedestrian facilities should be included as an integral part of the transportation system within the urban, suburban, suburban center, and rural center livable landscapes as defined by the County’s comprehensive policy plan Landscapes2. Municipalities should ensure that subdivision & land development, zoning, comprehensive plans and traffic impact guidelines support the inclusion of pedestrian amenities as outlined herein.
This policy has been established through the adoption of the *Public Transportation Plan*, an element to Landscapes2. Pedestrian facilities provide many more functions and advantages than just access to public transportation. They provide essential basic connectivity between local destinations as well as recreational opportunities that both contribute to healthy and vibrant communities and provide additional transportation options.

The following exhibit provides an overview of the livable landscapes location and applicability of the pedestrian facilities recommendation.
The following are recommended guidelines to be included in the establishment and/or revisions to any municipal sidewalk related ordinances:

- Sidewalks should have a minimum width of five (5) feet.
- Municipalities with Growth Areas (Urban, Suburban, and Suburban Center) and Rural Center livable landscapes should require by ordinance the installation and maintenance of sidewalks as an integral component of a community’s pedestrian network.
- Outside of the Growth Area and Rural Center livable landscapes, sidewalks should be provided on both sides of all roadways in the following locations:
 1) in all commercial districts;
 2) where sidewalks and/or pedestrian circulation has been prioritized on any associated policy plan; and,
 3) within one thousand (1,000) feet of any school, office building, medical institution, commercial use, shopping center, community facility (such as a park or trail) or similar use identified by the governing body.

- The following is a chart of recommended sidewalk and buffer widths for the Landscapes2 growth areas. Buffers are the space between the roadway and sidewalk edges and often include landscape material and/or street furniture depending on their context. Shy distances are the spaces adjacent to fences, buildings, plantings, etc. that pedestrians typically avoid, and only applicable in urban contexts:

<table>
<thead>
<tr>
<th>CCPC Functional Class</th>
<th>Major Arterial</th>
<th>Minor Arterial</th>
<th>Major Collector</th>
<th>Minor Collector</th>
<th>Local Road</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clear Sidewalk Width</td>
<td>6'-12' urban; 5'-6' suburban</td>
<td>6'-14' urban; 5'-6' suburban</td>
<td>6'-10' urban; 5'-6' suburban</td>
<td>5'-8' urban; minimum 5' suburban</td>
<td></td>
</tr>
<tr>
<td>Buffer</td>
<td>4'-6' urban; 5'-10' suburban</td>
<td></td>
<td></td>
<td>3'-6' urban; minimum 4' suburban</td>
<td></td>
</tr>
<tr>
<td>Shy Distance</td>
<td>0'-2' urban; N/A suburban</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Source: Smart Transportation Guidebook
Walkways

Walkways (also known as internal walkways or pedestrian paths) are designed to ensure that pedestrians can avoid using parking aisles or travel lanes for access to building entrances. A walkway is generally used for pedestrian transportation between buildings and parking areas or sidewalks, within parking lots, between buildings on a parcel or within a development, or between adjacent uses, developments, or facilities as shown in the examples below.

An internal walkway in the parking lot of the Government Services Center in West Goshen Township.

A system of pedestrian walkways on the campus of West Chester University.

WALKWAY

A designated single use facility with an improved surface, primarily for use by pedestrians, typically located outside of the road right-of-way and/or not directly adjacent to a street.
Chapter 3
Design Elements

BICYCLE/PEDESTRIAN

Recommendations

Municipalities should consider requiring walkways within parking areas, and between parking areas and buildings. Where buildings are constructed with a setback or a development that occurs on a parcel where the buildings do not abut a public sidewalk, a requirement for a walkway from the building entrance to the public sidewalk should be required. This requirement may be linked to criteria such as parking lots over a certain size or where a parking lot does not directly abut a public sidewalk.

The following are recommended guidelines to be included in the establishment and/or revisions to any municipal walkway related ordinances:

- Require walkways between:
 a) building entrances and sidewalks;
 b) buildings and parking areas;
 c) adjacent building entrances on the same lot;
 d) multiple uses on the same lot;
 e) transit stops and destinations (within ¼ mile): and/or
 f) between developments on adjacent parcels.
- Require walkways in parking lots and located within a center island or along the lot’s perimeter.
- Require walkways to have a minimum width of five (5) feet and otherwise constructed to meet PennDOT sidewalk standards, or in accordance with the requirements for a sidewalk within the applicable regulations of the municipal ordinances.
Crosswalks

Crosswalks and pedestrian signals with countdown timers are designed to facilitate safe crossing of roadways. These types of facilities are intended to limit the potential conflict between pedestrians and motorists.

Crosswalks may be either marked or unmarked: a marked crosswalk is any portion of the road outlined by painted markings or a different texture of concrete or pavers to slow and alert drivers, as shown in the following examples.

Signage plays a key role in regard to safety at crosswalks. Drivers must be alert for possible pedestrian activity and stop for pedestrians who are crossing a roadway in a marked or unmarked crosswalk.

Crosswalks are usually marked at intersections where there is a substantial amount of vehicular and pedestrian traffic, such as along school routes and at signalized and four-way stop intersections.

High visibility crosswalks are pavement markings that are installed to raise the awareness of motorists to the potential of pedestrians crossing the roadway. There are many different types of pavement markings for high visibility crossings. Zebra crossings (as shown in the photos) are considered to be the most visible crosswalk treatment for both pedestrians and motorists.

Countdown timers are installed in conjunction with walk signals and pavement markings at crossings. Timers warn pedestrians of the time remaining to completely cross the roadway safely before motor vehicles

A high-visibility crosswalk at the intersection of US Route 30 Business and PA Route 100 in West Whiteland Township.
begin to move through the intersection. Timers can be paired with audible cues to benefit sight impaired pedestrians.

See also MID-BLOCK CROSSINGS in the Shared Use Facilities design element.

A high-visibility crosswalk in Downingtown Borough.

A countdown timer in West Chester Borough.
Recommendations

Municipalities should consider amending ordinances to include requirements for crosswalks. The following are recommended guidelines towards addressing crosswalks in a municipal ordinance:

- Crosswalks shall be installed and maintained as an integral component of the sidewalk network of the [zoning district/other designation] and shall be provided at all intersections of streets and driveways, and at all continuations of sidewalks and paths across streets and driveways.
- All crosswalks shall include signage and/or pavement markings to indicate a pedestrian crossing.
- Crosswalks shall be a minimum of six (6) feet wide defined through the use of interlocking unit pavers or striped in accordance with the Federal Highway Administration’s *Manual on Uniform Traffic Control Devices (MUTCD)*.

General Recommendations

- For facility design guidance, follow the recommendations of PennDOT Design Manual 2 – *Chapter 6: Pedestrian Facilities and the Americans with Disabilities Act* and AASHTO’s *Guide for the Planning, Design, and Operation of Pedestrian Facilities*. Another valuable resource is the ITE publication *Designing Walkable Urban Thoroughfares*.
- Municipalities should consider amending their zoning and subdivision and land development ordinances to include definitions for pedestrian facilities and clarify these terms across municipal borders. It may also be necessary to delete conflicting definitions and replace wording as appropriate throughout all municipal ordinances.
- Municipalities should incorporate planning for pedestrian facilities in comprehensive plan updates or amendments, special studies and/or official maps.
- Development Process – It is common for municipal officials to place conditions on the approval of subdivision and land development applications. Through negotiation, a municipality can request the installation of pedestrian facilities. The Official Map, ordinance requirements, and other planning elements such as a Comprehensive Plan and/or other adopted plans such as a Bike/Ped Mobility Plan or Greenways Plan will identify the need for these facilities so that developers are aware that the municipality will require or would like to implement these facilities when land development applications are made.
Chapter 3
Design Elements

BICYCLE/PEDESTRIAN

References

• PennDOT – Smart Transportation Guidebook http://www.dvrpc.org/reports/08030A.pdf

• PennDOT – Bicycle and Pedestrian Information Page http://www.penndot.gov/ProjectAndPrograms/RoadDesignEnvironment/RoadDesign/Bike%20and%20Pedestrian/Pages/default.aspx#.VpfU-rYrJhE

• FHWA Pedestrian and Bicycle Information Center http://www.pedbikeinfo.org/

• Chester County Trail and Path Planning Guide http://www.chesco.org/DocumentCenter/View/415

• PennDOT Pedestrian Facilities Pocket Guide http://www.dot.state.pa.us/public/Bureaus/design/ADA/PocketGuide.pdf

• PennDOT, Pavement Markings and Signing Standards TC-8600 and TC-8700, Publication 111 http://www.dot.state.pa.us/public/PubsForms/Publications/PUB%20111.pdf
Chapter 3
Design Elements

BICYCLE/PEDESTRIAN

Shared Use Facilities

"Shared Use" or "Multi-Use" facilities are those where bicyclists share a facility with pedestrians and other non-motorized modes of travel such as equestrians, cross country skiers, in-line skaters, baby strollers, and those using motorized scooters and wheelchairs. These facilities are commonly referred to as ‘trails’ outside of a roadway right-of-way, and ‘sideways’ when located inside the road right-of-way.

Use restricted trails are commonly recreation related and located outside of the roadway right-of-way. The use restriction is generally created by the narrow width and steep grades of the path which limit the use to one user type (typically pedestrians within homeowner association maintained or hiking trails), but may also be limited to equestrians and/or mountain bikers to reduce potential user conflicts as determined by recreational programming.

Both of these facility types provide for a safe means of transport for both transportation and recreation purposes away from vehicular traffic and are valuable commodities contributing to the health and well-being of any community in which they are located.

This design element refers to both multi-use and use restricted paths applicable to both bicyclists and/or pedestrians.

Multi-Use Trails

Multi-Use trails typically have a hard surface (e.g., asphalt, concrete, compacted gravel, etc.) and have a recommended width per AASHTO of 10', although a minimum width of 8' may be used where space is constrained or in environmentally sensitive areas. Wider paths are also recommended if there is a high volume of existing or anticipated bicycle and pedestrian traffic.

MULTI-USE TRAILS
(Off-road facilities, intended for multiple user modes) - A facility that is physically separated from the roadway and typically accommodates bi-directional travel by both bicyclists and pedestrians. The trail can be located within a publicly owned right-of-way, an exclusive right-of-way, or an easement. Shared use trails typically have an improved surface (e.g., asphalt, concrete, compacted gravel, etc.) and have a recommended width (per AASHTO) of 10 feet, although a minimum width of 8 feet may be used where space is constrained or when located in environmentally sensitive areas.

The Chester Valley Trail in East Whiteland Township.
Sidemaps

Sidemaps are a subset of shared use paths that denote paths that run adjacent to a parallel roadway and can provide bicycle connections between on- and off-road facilities. Due to being located either within or directly adjacent to the roadway right-of-way with the potential for multiple vehicular crossings, these facilities often require a more in-depth operational and safety analysis.

Use-Restricted Trails

Use-restricted trails are those that limit the allowable user groups based on one or more of the following factors: grades, surfacing, widths, potential user-conflict, ownership, and/or programming.

Steep grades of more than 8.33% limit universal (ADA) accessibility. Surfacing other than a smooth hard surface such as concrete or asphalt may not only limit ADA accessibility, but also certain bicyclists, in-line skaters, persons with baby strollers and those using other wheeled human-propelled transportation. Use-restricted trails can be narrower than the minimum standard for a multi-use trail (less than 8 feet wide). The width is a limiting factor towards the capacity of the trail to safely accommodate both pedestrians and bicyclists (or in-line skating, equestrians, and other uses) resulting in the potential for user conflict. This is why the most common restriction for these trails is for pedestrian use only. These trails can be hiking only, equestrian only, mountain biking only, or a combination thereof. Trails that may be used by potentially conflicting user groups may be managed through programming. For example, trails intended for both equestrian and mountain biking use may alternate days for when these user groups will have access to the trail system. Other programming limitations may be relative to ownership, such as trail systems that are privately developed and managed by homeowners association that may limit who and what user types will have access to their trails.

A use-restricted path in East Goshen Township
Use-restricted trails would be the most common trail standard to be developed as part of an internal trail system associated with a planned residential development. The minimum width for a multi-use trail (8 feet) may not be warranted or desired by the developer or residents of those communities. While the CCPC encourages the development of trails to the multi-use standard wherever possible, the minimum width for trails to be developed as part of a planned residential development should be 5 feet, the same standard as for internal walkways. See also the PEDESTRIAN FACILITIES design element.

Mid-Block Crossings
A mid-block crossing permits pedestrians to cross a road at a location other than an intersection. These crossings require special engineering analysis to determine their appropriateness and effectiveness. Section 11.9 of the PennDOT Traffic Engineering Manual (Pub. 46) establishing criteria for mid-block crossings including roadway speed limit, traffic volume, sight distance, parking restrictions, proximity to other crossings, and pedestrian volume.

With some exceptions based on the specific conditions of any location, the following are PennDOT’s general minimum requirements for the installation of a mid-block crossing:

- The posted speed limit is 35 mph or less.
- The nearest marked crosswalk on the same roadway is over 300 feet from the proposed crossing.
- The minimum number of pedestrians crossing the street within 150 feet of the proposed crossing during an average day should be 80 or more during any 1 hour, or 40 or more during each of any 4 hours.
- The maximum traffic volume on the roadway is 10,000 ADT (average daily traffic), except on two-lane roadways the maximum traffic volume may be 15,000 ADT.
- Parking is not permitted within 75 feet of the crosswalk, unless a curb extension is in place to improve pedestrian visibility.
- Must meet sight distance criteria based on existing grades.
PennDOT encourages these same criteria for locally owned roadways. For state-owned roads, a mid-block crosswalk engineering and traffic study is required to record the study’s findings.

Recommendations

- Follow the recommendations of PennDOT Design Manual 2 – Chapter 16: Bicycle Facilities and AASHTO's Guide for the Development of Bicycle Facilities for bicycle only or multi-use/shared use facilities design.
- For mid-block crossing, follow the requirements of Section 11.9 of the PennDOT Traffic Engineering Manual (Pub. 46)
- Municipalities should consider amending their zoning and subdivision and land development ordinances to include definitions for bicycle and pedestrian facilities and clarify these terms across municipal borders. It may also be necessary to delete conflicting definitions and replace wording as appropriate throughout all municipal ordinances.
- Municipalities should incorporate planning for bicycle/pedestrian facilities in comprehensive plan updates or amendments, special studies and/or official maps.
Chapter 3
Design Elements

BICYCLE/PEDESTRIAN

• Municipalities should require the identification and maintenance of existing trails (both shared and use restricted) and establishment of additional trails and connections in new development. There are a number of ways to protect existing trails and establish new trails through ordinances. The following are key points that should be included in ordinances for trail requirements:

1. The standard width of any proposed multi-use trail should be 10 feet with a minimum width of 8 feet. Widths less than 8 feet should consider use restrictions based on projected users. The absolute minimum width for use-restricted trails should be 5 feet, the same as internal walkways.

2. Subdivision and land development ordinances should require the identification of existing trails and/or recreational needs or impacts (preliminary plan requirements, impact assessments, conservation plan requirements) as part of the land development process.

3. Logically continue, link or expand existing pedestrian facilities on, across and abutting the site consistent with the [Official Map, Improvements Plan Map, Comprehensive Plan, etc.]. The applicant may be requested to provide an easement dedicated to the municipality with connections to abutting properties that will enable the future continuation of the pedestrian network.

4. Ordinance requirements should protect existing trails or allow for the realignment of existing trails on a site.

5. There should be requirements for the identification and establishment of new trails as appropriate to connect to adjacent existing or planned facilities such as public bus or train stops or stations, public parks, community facilities, commercial areas, or higher density residential developments.

6. Existing trails to be realigned, or new trail alignments should be installed prior to the construction of buildings or other structures on a site. Identification and establishment of trails may be required by either the zoning or subdivision and land development ordinance, or a combination of both.

7. As appropriate, provide for the continued ownership and maintenance of trails and trail easements by having them dedicated to the public sector, donated to a private conservation organization, or placed under the care of a community association.
Chapter 3
Design Elements

BICYCLE/PEDESTRIAN

- Development Process – It is common for municipal officials to place conditions on the approval of subdivision and land development applications. Through negotiation, a municipality can request the installation of bicycle and pedestrian facilities. The Official Map, ordinance requirements, and other planning elements such as a Comprehensive Plan and/or other adopted plans such as a Bike/Ped Mobility Plan or Greenways Plan will identify the need for these facilities so that developers are aware that the municipality will require construction of these facilities when land development applications are made.

References

- FHWA Pedestrian and Bicycle Information Center [online]. http://www.pedbikeinfo.org/
Chapter 3
Design Elements

BICYCLE/PEDESTRIAN

ADA Accessibility

Accessibility improvements provide mobility and safety benefits for everyone, not only for those with disabilities. All municipalities are required to follow the Americans with Disabilities Act (ADA) Accessibility Guidelines and ensure that developments within their municipalities follow the appropriate guidelines and standards most appropriate for the facility type as set forth by the US Access Board.

PennDOT has developed accessibility standards that are based upon and in some instances exceed the requirements established by the US Access Board. These standards are outlined in PennDOT Design Manual 2 – Chapter 6: Pedestrian Facilities and the Americans with Disabilities Act.

The construction of all new facilities shall provide at least one accessible route within the boundary of the site from public transportation stops, accessible parking spaces, passenger loading zones if provided, and public streets or sidewalks, to an accessible building entrance. And, at least one accessible route shall connect accessible buildings, facilities, elements, and spaces that are on the same site.

The following links and info applicable to the design elements and related improvements described in this Multimodal Handbook were excerpted from the US Access Board Guidelines and Standards webpage: http://www.access-board.gov/guidelines-and-standards

Buildings & Sites

Standards issued under the Americans with Disabilities Act (ADA) address access to buildings and sites nationwide in new construction and alterations. Similar standards apply to building and sites funded by the federal government under the Architectural Barriers Act (ABA).

Recreation Facilities

Access to recreation facilities, including play areas, swimming pools, sports facilities, fishing piers, boating facilities, golf courses, and amusement rides is addressed in the ADA and ABA standards. New provisions will cover access to trails, picnic and camping sites, and beach access routes.

ADA ACCESSIBILITY

All or any portion of buildings, structures, site improvements, complexes, equipment, roads, walks, passageways, parking lots, transportation facilities, or other real or personal property that are readily accessible to and usable by individuals with disabilities to be expressed in terms of architecture and design, transportation and communication.
Chapter 3
Design Elements

BICYCLE/PEDESTRIAN

Streets and Sidewalks
New guidelines the US Access Board is developing will cover access to public rights-of-way, including sidewalks, intersections, street crossings, and on-street parking. The Board is also addressing access to shared use paths providing off-road means of transportation and recreation.

Transportation
Board guidelines issued under the ADA address access to public transportation facilities and vehicles. New guidelines for passenger vessels are in development.

• Transportation Facilities – http://www.access-board.gov/guidelines-and-standards/transportation/facilities/ada-standards-for-transportation-facilities

• Transportation Vehicles – http://www.access-board.gov/guidelines-and-standards/transportation/vehicles/adaag-for-transportation-vehicles
Recommendations

- For all pedestrian improvements within a public right-of-way, follow PennDOT Design Manual 2 – Chapter 6: Pedestrian Facilities and the Americans with Disabilities Act http://www.dot.state.pa.us/public/Bureaus/design/PUB13M/Chapters/Chap06.pdf

- For all other site related pedestrian improvements not covered by the PennDOT guidelines, follow the most appropriate guidelines as set forth by the US Access Board: http://www.access-board.gov/guidelines-and-standards

A good example of an ADA parking installation.

Another good example of an ADA parking installation.
(Page intentionally left blank)
Chapter 3
Design Elements

PUBLIC TRANSPORTATION

Bus Stops

The quality of a public transit ride is defined by all aspects of a rider’s experience, from the time of departure to arrival at the destination. Beyond a rider’s experience in the transit vehicle, there are two additional significant components to a “full” transit ride: the connection between a transit stop and one’s origin/destination; and the experience waiting for the arrival of the transit vehicle. In this context, the provision of bus stop amenities such as a bus shelter and sidewalk connections have influential roles regarding the quality of public transit in Chester County.

“A high-quality transit stop is one that is well connected to the neighborhood or community it serves, accommodates the needs of all transit passengers safely and comfortably, and permits efficient and cost-effective transit operations.”

— SEPTA Bus Stop Design Guidelines

Bus stops are located along the bus routes in the urban and suburban municipalities served by public transit. The primary service provider in Chester County is SEPTA, although additional bus routes are provided by the Transportation Management Association of Chester County (TMACC) including the Coatesville Link and SCCOOT (a partnership with the Southern Chester County Organization on Transportation); Krapf Transit Route A that connects Coatesville, Exton and West Chester; and the Pottstown Area Rapid Transit (PART) which provides bus service to the Coventry Mall and North Coventry Township emanating from Pottstown Borough.

This design element focuses on the development of bus stops, including bus shelters as amenities and the possible configurations for stop locations in line with the roadway.

Location

Proper site selection is critical for creating a safe and efficient bus stop. When planning for new or upgrading existing transit stops, municipal officials should reference the SEPTA Bus Stop Design Guidelines, prepared for SEPTA by the Delaware Valley Regional Planning Commission (DVRPC) in October 2012. These guidelines would also apply to areas served by other transit operators.

BUS STOP
A designated location - typically along a fixed bus route - where people gather to board and/or exit a bus.
Bus stops may be placed in one of three general locations relative to the roadway and intersections:

- Far-side stop
- Near-side stop; and,
- Midblock stop.

Placement at one of these three locations within the roadway must also consider in-street design alternatives relative to the flow of traffic. The SEPTA guidelines include guidance for the following in-street design alternatives illustrated on the following page:

- Curbside/Shoulde\^
- \^er Stop
- Curb Extension
- Bus Bay/Turnout
- Open Bus Bay

Source: SEPTA Bus Stop Design Guidelines
Bus stops located outside of the roadway path are considered to be “off-line” stops and are commonly associated with transportation centers, railroad stations, office or medical centers, shopping centers, or park-and-ride facilities.

The SEPTA Bus Stop Design Guidelines also provide guidance towards the recommended dimensions for the standard elements of a bus stop in the chapter titled ‘Curbside Design’. These elements include a loading pad, waiting area, stop area, pedestrian path, street furniture (if applicable), and a clear area for the following six bus stop types:

1. Minimum stop with recessed pedestrian path;
2. Minimum stop with curbside pedestrian path;
3. Narrow urban stop;
4. Urban stop with seating;
5. Stop with narrow shelter; and,
6. Stop with standard shelter.

Developers should determine which configuration and stop type may be most applicable to the proposed bus stop location based on existing roadway characteristics and site conditions, and refer to the SEPTA Bus Stop Design Guidelines for the most applicable guidelines towards its design. SEPTA staff can serve as a resource for site specific issues along its routes.

For additional stop types in a suburban setting, another point of reference to consider would be the Rethinking the Suburban Bus Stop and Safety & Security at Suburban Bus Stops publications prepared by the Airport Corridor Transportation Association (ACTA) in western Pennsylvania.
Chapter 3
Design Elements

PUBLIC TRANSPORTATION

Curbside/Shoulder Stop

Curb Extension

Open Bus Bay

Bus Bay/Turnout

Source: DVRPC 2012

Source: DVRPC 2012

Source: DVRPC 2012

Source: DVRPC 2012
Bus Shelters

Bus shelters can greatly improve the public transportation experience by providing riders with a safe waiting area, protection during inclement weather, and service information. Bus shelters are generally located in a roadway right-of-way unless private property owners have consented to the shelter being placed on their property. Shelters can be integrated into the building design, as shown in the Exton Mall image below, where a bus stop and shelter was implemented as part of the Mall’s renovation several years ago.

A bus shelter in West Whiteland Township along U.S. Route 30 Business.

A bus stop and shelter at the Exton Square Mall in West Whiteland Township.

Municipalities should adopt requirements for the placement of bus stops with shelters in municipal ordinances when buildings, uses, or developments, that meet a minimum threshold, and occur along or within proximity of an existing or planned bus route. Pedestrian connections to the bus stop/transit shelter from parking lots and nearby development
Chapter 3
Design Elements

PUBLIC TRANSPORTATION

should be required as referenced in the SEPTA Bus Stop Design Guidelines which recommends a pedestrian way connecting to every stop. Each municipality will need to determine the appropriate criteria for what type of development (size, number of units, density) should trigger the requirement for a bus stop with shelter. Each municipality should also determine criteria for maintenance and operational responsibilities for shelters.

Implementation of pedestrian connections and bus shelters will rely heavily upon the local land development process as well as targeted capital improvement projects at key locations where land development may not be imminent or where these facilities are identified to be most needed.

To direct improvements where they are most needed, the Public Transportation Plan recommends bus shelters at bus stops with greater than 5 daily boardings.
Chapter 3
Design Elements

PUBLIC TRANSPORTATION

The ‘Bus stops recommended for shelters in Chester County’ exhibit above was generated based on the bus ridership data (daily boards) available at the time of the study. As the ridership continues to grow and evolve with varied degree of intensity, those ridership numbers will change. CCPC recommends the following three classifications of bus stops relative to the minimum curbside amenity to be provided at bus stops based on actual ridership data:

Basic Stop: daily boards of 5 or less
- Bus Stop sign printed on both sides to be visible from the roadway;
- ADA accessible loading pad; and,
- Paved pedestrian sidewalk/walkway connections (ADA accessible) leading to the nearest building entrance or connecting to an existing walkway system.

Collector Stop: daily boards from 6-20
Includes all Basic Stop amenities plus:
- Bus Shelter;
- System map indicating all transit routes serving the location;
- Bench and Trash Receptacle; and,
- Lighting.

Hub Stop: daily boards from 21-50
Includes all Collector Stop amenities plus:
- Bus Shelters (minimum of 1, or a larger sized shelter);
- Benches and Trash Receptacles (minimum of 2 each);
- Bicycle Racks; and,
- Real time status info/kiosk.

Daily boards greater than 50:
- See Transportation Centers.
The following are photo simulations illustrating how an existing bus stop may be developed using the SEPTA Bus Stop Design Guidelines. Site 1 is an example of a far-side stop with a bus bay/turnout, and site 2 is an example of another far-side stop with a curbside/shoulder boarding configuration.

Collector and Hub stops may be placed off-line (outside the roadway) and within a site development to accommodate for the additional time required to load and unload what would be a higher volume of passengers and minimize any associated traffic impacts. These stops would be most applicable to commercial and employment centers and should be provided.
in a central location relative to all sites that may be served and connected by pedestrian walkways.

Bus stop installations must consider both inbound/outbound directions for the associated transit route(s). Stops may be needed on either side of the roadway or intersection to provide for access to each direction.

An existing barrier to bus stop development is the reluctance of various agencies to assume the maintenance responsibilities of bus shelters. Many existing shelters are provided and maintained by advertising agencies that at the present time have no interest in expanding their footprint in Chester County.

Transit agencies are not responsible for the design or maintenance of transit stops in Chester County. Therefore, the provision of high-quality transit stops requires a partnership between transit agencies, Transportation Management Associations, municipalities, PennDOT, and property owners.

Recommendations

- Provide the recommended curbside amenities as per the Basic, Collector, and Hub stop classifications described herein based on the projected ridership (daily boards) associated with the proposed new development for new bus stop installations.

- Retrofit existing bus stops to provide for the curbside amenities as per the Basic, Collector, and Hub stop classifications described herein based on historically consistent existing actual ridership (daily boards).

<table>
<thead>
<tr>
<th>Stop Type</th>
<th>Amenity Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stop Type</td>
<td>Bus Stop Sign</td>
</tr>
<tr>
<td>Basic Stop (daily boards of 5 or less)</td>
<td>X</td>
</tr>
<tr>
<td>Collector Stop (daily boards from 6-20)</td>
<td>X</td>
</tr>
<tr>
<td>Hub Stop (daily boards from 21-50)</td>
<td>X</td>
</tr>
</tbody>
</table>

* = Minimum of 1, or a larger sized shelter.

** = Minimum of 2 each.
Chapter 3
Design Elements

PUBLIC TRANSPORTATION

Recommendations (continued)

• Follow the recommendations of the *SEPTA Bus Stop Design Guidelines* towards the design and implementation of new and/or retrofit bus stop development.

• Provide bus shelters and pathways to and from transit shelters as part of high density land uses and major traffic generators near existing or future transit routes. Prioritizing the installation of these basic amenities at the more frequently used stops will create a safe and inviting point of access to the transit system and serve as an example for the implementation of improvements at other stop locations. Bus stop consolidation may be used to provide for more boardings at certain locations which would also contribute to increased route efficiency. Local ordinances may also need to be adjusted or revisited to allow for the placement of bus shelters, depending on the existing statutes.

• Consider including requirements for bus stops in zoning and/or subdivision/land development ordinances. The following are recommended guidelines towards the establishment of a bus stop with shelter ordinance:

 • Bus stops with shelters should be required along existing public transportation routes or key transportation corridors that have the potential for public transit service based on the density or intensity of proposed residential, institutional, commercial, or industrial uses. For example, a bus stop with shelter should be required where the gross leasable area for commercial, industrial, or institutional uses is fifty-thousand (50,000) square feet or more or where there is a residential development greater than one hundred (100) dwellings units. The municipality can adjust the “thresholds” to meet their community objectives or the intent of the associated zoning district.

 • Bus stops with or without shelters should be adequately lighted to provide safety and visibility for users. The source of light shall be shielded from all abutting properties and from traffic along any adjacent roadway.

 • Sidewalks and internal walkways should be provided to connect bus stops shelters to adjacent uses that generate significant pedestrian traffic.

 • Bus stops with shelters and their related facilities and amenities should be designed in accordance with the design standards of the SEPTA Bus Stop Design Guidelines as produced by the Delaware Valley Regional Planning Commission (DVRPC). Where
there are site-specific issues that are not explicitly covered by the SEPTA Bus Stop Design Guidelines, it is particularly important that they be vetted by the operating agency. This includes situations where a design exception or mitigation of conditions is required. In the case of SEPTA, both Service Planning and Transportation (operations) should be consulted to insure that there are no unintended operational issues that are generated by the bus stop design.

• The municipality shall have the final determination as to the location of bus stops with shelters. Area and bulk regulations of the associated zoning district shall not apply to the placement of bus stops with shelters.

• Bus shelters shall be placed on a concrete slab which should be constructed in accordance with municipal ordinances.

• Bus shelters should not exceed five (5) feet in width and ten (10) in length and shall be constructed of an aluminum frame with a minimum of two (2) sides enclosed with lexan, acrylic, Plexiglas, or safety glass and a roof. A bench should be provided in the shelter with a center divider/arm rest and a trash receptacle in a style approved by the municipality.

• Bus stops with shelters should be well-marked/identified with a double-sided sign, preferably on its own pole in accordance with current SEPTA sign standards.

• Bus stops with shelters should be maintained in a clean and neat condition and in good working order and repair and shall be inspected and cleaned at least once every seven (7) days.

• Develop a maintenance agreement model(s) for maintaining bus shelter facilities. Given that bus shelter maintenance is one of the existing barriers to implementing additional bus shelters in retrofit contexts, the public transportation agency providers, the TMAs, chambers of commerce, municipalities, and Chester County must identify at least one (preferably multiple) model for maintaining bus shelters that is agreeable and endorsed by all aforementioned parties. In the context of future land development projects, the maintenance of bus shelters should be codified as an obligation of the land developer/property owner.
Chapter 3
Design Elements

References

Park and Rides

A park and ride facility offers a safe, convenient location for commuters to leave their automobiles and travel to their destination in carpools, vanpools or buses. Park and ride facilities reduce the total number of vehicle miles of travel and improve air quality. A park and ride facility can offer a transit provider convenient access to a large number of patrons without going to the added operating expense and time of circulating buses through residential neighborhoods.

Park and ride lots can provide the following benefits:

• **Improves Energy Efficiency**: Park and ride lots can lead to reductions in vehicle miles of travel, energy consumption and vehicle emissions.

• **Encourages Public Transit Opportunities**: While many communities would like to establish some form of public transportation for their residents and commuters, few municipalities have the development density to financially support public transportation. A heavily used park and ride lot can create a critical mass that may lead to the development or extension of a bus route. Decisions about routes are made in the context of available funding and, in SEPTA’s case, as part of its established Services Standards and Process and Annual Service Plan.

• **Reduces Congestion**: As major highways are reconstructed, congestion can be mitigated through the expansion of ridesharing, which is further enabled with the provision of Park and Ride lots.

Park and ride facilities may range in scope from several reserved parking spaces within a commercial or institutional parking lot to a facility of 500 or more parking spaces. The facilities may include:

• bus loading and unloading areas;
• taxi or kiss-and-ride areas;
• bicycle parking; and
• ADA compliant pedestrian access.

The size of the parking lot is dependent on the design volume, the available land area, and the size and number of other parking lots in the area.
Chapter 3
Design Elements

PUBLIC TRANSPORTATION

Park and ride lots come in different forms including:

- A parking lot that was constructed for other uses such as a shopping mall but is being informally used for ride sharing.

- A parking lot at a shopping center or church which has been formally leased for use by commuters; or,

- A lot which has been constructed by a public agency exclusively for use by commuters.

Chester County’s recently adopted Public Transportation Plan recommends implementation of the ‘New Commuter Service Model’ to address not only roadway congestion, but also service gaps and new service requests in the existing public transportation system. These new commuter services would begin as: a carpool originating from one of the park & ride locations; a group of people working at one of the county’s major employment centers; or, any combination thereof. As the numbers of riders/participants increase, carpools would then evolve into a vanpool, and eventually into an express bus service.

![Diagram of park and ride lot with carpools, vanpools, and express buses]

Park & Ride at US 202 and Paoli Pike in West Goshen Township.
Recommendations

- Develop additional park and rides within Chester County. There are seven existing park & ride facilities located near major interchanges throughout the county as represented by letters a-g on the exhibit below.

Proposed facilities (as indicated by letters h-q) in the exhibit above should be developed through the land development process and/or shared use arrangements with existing commercial centers.

Similar to bus shelters, the maintenance of park & ride lots is an existing barrier to the expansion of these facilities. Presently, PennDOT will develop park and ride lots but is reluctant to accept the maintenance responsibilities. Resolution of this issue is critical to the expansion of the park & ride network as envisioned by the Public Transportation Plan.
Considerations for new park and rides include:

- Park and ride lots must be designed with safe access into and out of the lot.

- Locate park-and-ride lots adjacent to major highways interchanges and/or adjacent to existing or anticipated bus routes and visible to commuters whom they are intended to attract. In all cases, directional and informational signage should be provided. The parking areas should be located at points that precede bottlenecks or significant traffic congestion and close to residential areas to minimize single occupant vehicle traffic.

- Appropriate landscaping should be provided to mitigate the aesthetics associated with parking areas. The landscaping design should avoid unsightly expanses of pavement and should consider security as well as sight distance requirements. See also the LANDSCAPE MATERIAL design element.

- Street lighting should be included in the design of the project where security issues may be present. See also the LIGHTING design element.

- New facilities should provide adequate turning radii for both a standard 40 foot bus and a coach bus. See also the VEHICLE CHARACTERISTICS design element.

- Porous paving should be considered for lot surfacing to reduce stormwater runoff.

- Municipalities should consider encouraging the dedication of spaces for park and ride in commercial uses during the land development process. For example, a cinema complex may be an excellent opportunity for day use as a park and ride lot.

- A promotional program is needed periodically to inform the public of the availability of the lot.

- Park-and-ride facilities could be provided through lease arrangement with existing commercial properties, churches or fire halls. The reason for leasing space instead of building a new facility is to reduce the initial cost, assess the demand for such a facility and minimize the potential depletion of existing land.

- When demand at an existing, leased facility increases it may require leasing more parking spaces, making an addition to the existing facility or building an entirely new facility.

- Development of a park and ride facility should include a maintenance agreement that should be codified as an obligation of the land developer/property owner through the land development process.
References

Aerial photo of Quakertown Park and Ride located nearest the I-476 Northeast Extension/PA 663 intersection in Bucks County, PA.
Rail stations and transportation centers serve as the intermodal hubs of the public transportation system in Chester County. They are the primary locations for where Chester County residents access either SEPTA or Amtrak services along the central commuter rail spine of the Keystone Corridor, or from where transit users may board one or more or transfer between the bus routes that serve the county and beyond.

This design element focuses on rail stations and transportation centers and the amenities they may provide to improve the built environment for transit users and their experience using the public transportation system.

The quality of a public transit ride is defined by all aspects of a rider’s experience, from the time of departure to arrival at the destination. Beyond a rider’s experience in the transit vehicle, there are two additional significant components to a “full” transit ride: the connection between a transit stop and one’s origin/destination; and the experience waiting for the arrival of the transit vehicle. In this context, the amenities at rail stations and transportation centers have significant roles regarding the quality of public transit in Chester County.

Rail Stations

There are two passenger rail providers that serve Chester County. Amtrak provides regional and intercity service on the Keystone Corridor between Philadelphia and Harrisburg with additional intra- and interstate connections. SEPTA operates the Paoli/Thorndale commuter rail service on the same rail line extending between Philadelphia and Thorndale with regional connections in Philadelphia. This rail right-of-way is owned by Amtrak and extends on an east/west axis through the central portion of Chester County.

There are twelve existing passenger rail stations in Chester County (listed below from east to west). Two are served by Amtrak only, seven are served by SEPTA only, and three are served by both agencies:

- **Strafford**: Old Eagle School & Crestline Roads
- **Devon**: Lancaster Ave. & Devon State Rd.
- **Berwyn**: Lancaster Ave. & Main Ave.
- **Daylesford**: Lancaster Ave. & Glenn Ave.
- **Paoli***: North Valley Rd. & Lancaster Ave.
- **Malvern**: Warren Ave near King St.
- **Exton***: Walkertown Rd. at PA 100

RAIL STATION

A stop along a commuter rail line where trains load or unload passengers.
Chapter 3
Design Elements

PUBLIC TRANSPORTATION

• **Whitford**: Whitford & Spackman Roads
• **Downingtown***: Lancaster & Stuart Avenues
• **Thorndale**: Lincoln Highway & South Bailey Road
• **Coatesville****: North 3rd Ave. between Coates & Fleetwood Streets
• **Parkesburg****: West 1st & South Culvert Streets

* - serviced by both SEPTA and Amtrak
** - serviced by Amtrak only

Chester County Rail Stations

Rail Stations
- SEPTA
- SEPTA/Amtrak
- Amtrak
- Strafford
- Devon
- Berwyn
- Daylesford
- Paoli
- Malvern
- Exton
- Whitford
- Downingtown
- Thorndale
- Coatesville
- Parkesburg

Existing Bus Routes serving Chester County

Keystone Corridor

Growth Areas
The passenger rail service along the Philadelphia–Harrisburg line, particularly SEPTA’s Paoli/Thorndale service, is the backbone of all public transportation in Chester County. The Paoli/Thorndale is the County’s most heavily used public transportation service. The condition and accessibility of the stations along this rail line are key factors in drawing new riders and retaining existing riders.

Transportation Centers

There are three (3) transportation centers providing bus service connections located in Chester County:

- **West Chester Transportation Center** – This facility is located in the ground floor of the parking structure across from the Chester County Justice Center and provides connecting bus service for SEPTA Routes 92 and 104, Krapf Transit Route A and TMACC’s SCCOOT route. Public parking is available in the garage, although space is limited.
• **Exton Transportation Center (Exton Square Mall)** – This facility is located on the eastern side of the Exton Square Mall and provides connecting services for SEPTA Routes 92 and 204 and Krapf Transit Route A. Ample parking is available in the adjacent parking structure.

The Exton Transportation Center at the Exton Square Mall.

• **Paoli Intermodal Transportation Center (ITC)** – Once developed, the Paoli ITC will become Chester County’s third transportation center. More information regarding the status of current planning and design efforts may be found at: www.paolitransportationcenter.com/

The *Public Transportation Plan* identified a number of critical issues applicable to both rail stations and transportation centers. The most common issue to be addressed is parking availability. Limited parking at rail stations and to a lesser degree transportation centers limits the ability for people to access the public transit system. This limitation essentially places a cap on ridership. The majority of people that use public transit in Chester County typically drive from their homes to the rail stations so that they may use the commuter rail system. If no spaces can be found at the station of choice, potential transit users either choose to drive to another station, or in most cases decide to complete the trip in their automobile.

The lack of first mile (home to transit) and last mile (transit to destination) connections creates a significant barrier to public transportation use in Chester County. These first mile/last mile connections can be addressed through the provision of a drop-off (kiss n ride) loop and/or additional shuttle bus parking. Another potential solution is the installation of car shares and/or bike shares at or near the station sites.

Bicycle, pedestrian and/or shared use facilities described in this handbook should be improved within and around rail stations and transportation
centers to provide for better connectivity between adjacent neighborhoods and the public transportation system. Bicycle parking is an amenity that if securely provided may attract additional riders who would access the stations/centers via bicycle rather than by car.

Recommendations

- Provide for additional parking at rail stations with the following three-tiered approach:

 1. Expand surface parking at all stations where feasible. Surface parking should be developed to maximum capacity feasible at all station sites.

 2. Maximize shared use parking opportunities adjacent to rail stations. Arrangements with adjacent properties with existing lots or the space available to create additional parking should be explored to maximize parking if no additional space is available at existing stations.

 3. Develop structured parking where feasible. Once surface parking at the station sites is maximized, and all shared use opportunities with adjacent properties are exhausted, structured parking should be developed if feasible.

- Consider implementation of the recommended improvements for existing rail stations as outlined in the *Passenger Rail Stations* Technical Memorandum published by CCPC in January 2005.

- Recommended amenities for rail stations and transportation centers include:

 - ample vehicular parking;
 - bicycle parking;
 - kiss ‘n ride/drop-off/bus loop;
 - system/route mapping;
 - benches & trash receptacles;
 - real time status info;
 - heated shelter or waiting area; and,
 - restrooms.

- Bicycle parking should correlate to the percentage of ridership that access the stations via bicycle. With the implementation of better bicycle facilities in the vicinity of the stations, demand for bicycle parking will increase. See also the BICYCLE PARKING Design element.
• Provide car shares/bike shares at or near rail stations. Such facilities would require some form of public/private partnership and the ability for the share provider to establish a presence at or very near to the station site. The shares would also require reciprocal stations at or near the employment centers so that consumers would not be charged for the down time of having the vehicle while they are working. Feasibility studies will be required to further investigate car share/bike share opportunities associated with the rail stations.

• Municipalities should promote appropriate land uses and development densities in the vicinity of stations that enhance ridership potential and improve the interaction between the station and surrounding community. Examples of complementary land uses include convenience uses such as child care facilities, laundries/dry cleaners, and higher density residential development that would allow walk-up access to the station.

• SEPTA or Amtrak should expand its leasing of space in stations to businesses. The most popular offering at present is coffee shops, but there is additional potential. Niche markets should be identified that reflect undeserved needs around each station. These additional uses may require designated parking for vehicular-oriented traffic which may create an enforcement issue that should be considered by the municipality.

References

• Chester County Public Transportation Plan, an element to the Landscapes2, the Chester County Comprehensive Policy Plan http://www.chesco.org/DocumentCenter/View/17264

Bicycle Parking

Parking is an essential feature to the accessibility of all land use types. Just like parking a car, people need a safe, secure, and convenient location to store their bicycle once they get to their trip destination. The type of bicycle parking facility is dependent on the type of user and volume of bicyclists. For instance, commuters may prefer covered bicycle parking, such as a bike locker, for added security and to protect their bicycles from the elements for extended lengths of time. Alternatively, someone running errands may be more concerned with ease of access to quickly park and depart the location.

To accommodate recreational bicycling and bicycle mobility, it is essential that communities provide, or facilitate the provision of, secure bicycle parking and/or storage for a bicycle. The image below illustrates the need for bicycle parking at the Downingtown Train Station where bicycles are often locked to fences in a waiting/sitting area because no other option for bicycle parking is provided. There are several options for short-term and long-term bicycle parking and include, but are not limited to, bicycle racks, bicycle stations, and bicycle corrals.

This train platform at the Downingtown Train Station illustrates a need for dedicated bike parking.
Chapter 3
Design Elements

INFRASSTRUCTURE & AMENITIES

BICYCLE RACKS
Stationary fixtures on which a bicycle is held upright and securely attached (typically using a bicycle lock) to prevent theft.

Bicycle Racks
Depending on the type of rack and space dedicated to the parking of bicycles, a bicycle rack can accommodate a few bicycles or a few dozen. Bicycle racks are available in many different designs and configurations that can be customized to any given installation. At a minimum, bicycle racks should be conveniently located, easy to use, and secure.
Bicycle Corrals

Corrals typically have 6 to 12 bicycle racks in a row and can park 10 to 20 bicycles using space otherwise occupied by one to two cars. Bike corrals remove the bicycle (and rider) from the sidewalk and away from potential conflicts with pedestrians using the sidewalk. Several bike corrals have been installed in the City of Philadelphia where the demand is high for bicycle parking as shown in the following image.

Bicycle Stations

Amenities can include changing facilities, day use lockers, parts and other gear available for purchase, repair services, air inflation stations, and information. Cyclists can purchase a membership to access their bicycles anytime, day or night. The bike station pictured below is located in Washington D.C. and the membership fee averages around $100 per year.
Recommenda
tions

Municipalities should include requirements for bicycle parking in their zoning/subdivision & land development ordinances. Bicycle parking should be targeted to the following land uses:

- Institutional (libraries, schools, government offices)
- Retail centers
- Employment centers
- Recreational uses (parks and trails)
- Rail stations
- Transportation centers

There are a number of ways to incorporate bicycle parking into ordinances. Ordinances can require a certain amount of parking spaces be dedicated to bicycle parking though the installation of bike racks. Ordinance standards can also require or encourage the installation of bike racks near the entrance to a business or use on a public sidewalk where appropriate accommodations can be made. This can be accomplished through off street parking requirements, streetscape requirements, or incentives. The following are recommended guidelines towards the establishment of a bicycle parking ordinance:

- Bicycle racks should be required based on the density or intensity of a proposed residential, institutional, commercial, or industrial use. For example, one (1) bicycle rack that accommodates a minimum of ten (10) bicycles shall be required for every fifty-thousand (50,000)
square feet of gross leasable floor area or fifty (50) or more multi-family dwelling units. The municipality can adjust the “thresholds” to meet their community objectives or the intent of the associated zoning district.

<table>
<thead>
<tr>
<th>Land Use</th>
<th># of Bicycle Parking Spaces</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multi-family Residential</td>
<td>10 spaces for every 50 or more dwelling units</td>
</tr>
<tr>
<td>Institutional, Commercial or Industrial</td>
<td>10 spaces for every 50,000 SF Gross Floor Area</td>
</tr>
</tbody>
</table>

- Bicycle racks should be permanently anchored to promote stability and security, unless the racks are portable in which case they should be securely locked to a permanent structure.
- Bicycle racks should be located in visible areas near building entrances and/or areas of pedestrian activity such as: courtyards, bus shelters, etc.
- Bicycle racks should be located under a shelter or a building overhang or inset to provide shelter from the elements for bicycles and riders.
- Where no designated area for bicycle racks is feasible, perhaps in the case of a change in use, automobile parking space(s) can be dedicated to bicycle parking through the use of portable bicycle racks.

Other means by which to provide for more bicycle parking include:

- Encourage businesses to place bike racks at existing facilities; and,
- Ask businesses/business associations to donate money for bicycle parking or to sponsor bicycle parking for placement by the municipality.
Emergency Access

Chester County’s Emergency Management Services provided the following general suggestions on providing emergency access to a property or development:

1. Provide more than one access point for subdivisions over 24 dwelling units.
2. Provide the proper turning radius and turnaround areas for emergency vehicles. See also the VEHICLE CHARACTERISTICS design element.
3. Reduce strings of flag lots to allow drivers the ability to find the correct parcel.
4. Make driveway grades no steeper than 12 percent.
5. Ensure proper pavement thickness for emergency access areas, especially at the rear of apartment buildings.
6. Provide emergency access routes, maintain them and make keys available if gates and locks are used.
7. Provide adequate distances between buildings and fire lanes for apartments, offices and commercial development.
8. Provide easy access to fire hydrant hook up locations.

Emergency vehicle response is time-critical and vehicles are directly affected by poorly designed roadways. If roads are designed to facilitate emergency vehicle access, response time may be improved.

The following options as illustrated in the following Emergency Access Points exhibit (or combination of options) are some ways emergency vehicles can be accommodated when a development is unable to provide a second, fully improved access point:

1. stabilized grass paver and curb cut;
2. stabilized or paved surface with gate or chain and curb cut; and
3. undercarriage preventer device and curb cut.
An efficient system that prevents misuse is the use of grass paver which provides a stabilized surface. This allows for grass to grow in the crevices and over the pavers so that they cannot be seen. In most cases they do not require a chain.
A gate or chain requires an emergency vehicle operator to dismount from the vehicle to open a gate or unlock or cut through a chain. They must also have the proper keys if it is locked. Gates are used more infrequently because of their susceptibility to violations and frequency of disrepair.

Undercarriage preventer devices are susceptible to violation by other motorists and may cause damage to the vehicle or pose a safety problem to the crew from the shock of crossing.

Where curbing exists, curb cuts should be provided to allow vehicular crossings without causing damage. Individual options should be evaluated based on specific site characteristics.

Recommendations

- Municipalities should require that all major developments have two, fully improved access points for the provision of emergency services. In the event that a second access point is not feasible then an emergency access point should be provided. If an emergency access point is used, an easement delineating maintenance and ownership responsibilities should be determined prior to plan approval.

- An emergency access point is only a temporary measure. It should only be kept in place until logical roadway extensions into future, adjacent developments can occur. If a road provides for an emergency access point at its terminus, then it should be designed according to its intended future use within the local road network.

- An emergency access route should be provided with no gates or chains that is traversable by emergency vehicles only or, if gates and locks are used, make keys available to emergency services. Use lightweight chains that are highly visible and can be easily broken by emergency vehicles. Provide a stabilized surface for use as a fire lane on all sides of apartment, commercial or industrial buildings.

- Municipalities should coordinate subdivision plan reviews with local emergency service providers.

Fire Lane

Residential, commercial or institutional buildings should be located within a reasonable distance of a dedicated, accessible and improved public street to ensure access to emergency fire vehicles. An emergency fire lane should be provided within the property lines to provide access to all buildings.

Minimum curb radii adequate for all emergency vehicles should be provided throughout the length of the fire lane. Fire lanes should also be designed to be continuous and not terminate in a dead-end.
Recommendations

• Locate all commercial or institutional buildings within 150 feet of a dedicated, accessible and improved fire lane easement or no more than 600 feet from a dedicated, accessible and improved public street.

• Provide a minimum unobstructed right-of-way of 40 feet, with a 20-foot cartway width for fire lane easements.

• Provide a minimum of 55-foot radius on horizontal curves to accommodate emergency vehicles in the fire lane.

• Fire lanes should be designed to be continuous and not terminate in a dead-end.
Chapter 3
Design Elements

Landscape Material

Definition
Trees, shrubs, and other plantings utilized in parking lots, streetscapes, and buffer areas.

Comments
Landscape material greatly enhances the attractiveness and appeal of commercial and residential developments, contributes to community character, and provides environmental benefits. Trees, shrubs and groundcovers provide many benefits, including:

- creation of a comfortable human scale environment;
- reduction of the urban heat island effect over large expanses of paving and thus extension of the paving lifespan;
- improved air and water quality;
- increased safety as a traffic calming element; and,
- reduced traffic noise.

When planning a streetscape, parking lot, or buffer area that is to include plant material, several factors should be considered when selecting plant species, including:

- the mature height and spread;
- the potential for root system damaging sidewalks and pavements;
- maintenance requirements such as the leaf and fruit litter; and,
- tolerance to pruning and adaptability to the street environment.

Plantings should always be located outside the clear sight triangle and should be several feet from the edge of the curb to allow for the openings of vehicle doors and free movement of passing vehicles. Drivers must be able to see between vegetation therefore plantings within or near the clear sight triangle should be trimmed to 2.5 feet high or should hang no lower than 8 feet. See also the INTERSECTIONS design element.

Requirements for street trees should be included in the subdivision and land development ordinance and be applied to all types of subdivisions and land developments. Requiring the right types of trees and appropriate spacing between trees during the plan review stage is important to avoid fixing costly mistakes at a later date. The use of native species (a species that occurs naturally within a region, either evolving there or arriving and becoming established without human assistance) should be encouraged, if not required.
Chapter 3
Design Elements

INFRASTRUCTURE & AMENITIES

Recommendations

• Trees shall be located so as not to interfere with the installation and maintenance of sidewalks and utilities.

• Clear sight distances must be maintained at all intersections and driveway entrances. See also INTERSECTIONS design element.

• Trees to be installed should be a minimum three (3) inch caliper and a minimum of eight (8) feet in height at planting.

• Municipalities should include a street tree planting list that includes preferred species of plant materials with mature height and width. Trees placed in streetscapes, parking lots, or other urban environments in close proximity to paving shall be resistant to salt and de-icing compounds, not subject to disease or blight, able to withstand concentrated heat from large paved surfaces, and have deep root systems to prevent cracked pavements and sidewalks. One local resource listing such trees is the Philadelphia Parks & Recreation Recommended Street Tree List.

• Municipalities should provide a list of preferred native species of plant materials as their use is strongly encouraged. Non-native species may be planted to serve specific purposes as long as they are not also invasive species. One local resource for native species information is the Brandywine Conservancy.

• Trees with potential susceptibility to infectious disease or pathogens should be avoided, such as Ash trees (fraxinus species) due to the current spread of the Emerald Ash Borer.

• Trees with limited lifespans and structural issues should be limited to areas where their falling will not impact public safety or property. One such species is the ‘Bradford’ pear.
• Trees planted within urban environments should be planted within a space that allows for proper root growth. This may be accomplished through the use of continuous linear tree trenches, structural soil, silva cells or a combination thereof.

• Existing trees located between the cartway and right-of-way that meet the minimum caliper and height requirements may be used to satisfy the planting requirements if approved by the municipality. Existing trees to be preserved and used to satisfy street tree requirements shall be protected during construction phase through the use of a tree protection zone (TPZ) or similar tree protection standards.

![Tree protection zones.](image)

• Planting Plans should be prepared by a Registered Landscape Architect in the Commonwealth of Pennsylvania or equivalent professional. This is a requirement in many municipalities.

• All plant material should conform to the standards for nursery stock of the American Association of Nurserymen.

![This is a good example of a parking lot landscape installation.](image)
Lighting

Definition
The illumination of a roadway and/or parking facility by a fixed source.

Standards
Roadway:
• The Illuminating Engineering Society of North America (IESNA), *Roadway Lighting*
• PennDOT Design Manual Part II: Highway Design: Chapter 5 – *Lighting*

Parking and other site facilities:
• The Illuminating Engineering Society of North America (IESNA) *Lighting Handbook*

Comments
Lighting may improve the safety of a highway or street and the ease and comfort of operation. Statistics indicate that the night time accident rate is higher than that during daylight hours, which to a large degree, may be attributed to impaired visibility. Evidence shows that in urban and suburban areas, where there are concentrations of pedestrians and roadside intersectional interferences, fixed source lighting tends to reduce accidents. The general consensus is that lighting of rural highways seldom is justified except on certain critical portions, such as intersections and interchanges, and areas where roadside interference is a factor. (AASHTO)

Warrants are factual evidence compiled for the purpose of justifying the installation of roadway lighting. Warrants should be based on conditions relating to the need for roadway lighting and the benefits it may provide. Factors such as traffic volume, speed, road use at night, night accident rate, road geometrics, and general night visibility are important considerations in determining the minimum conditions justifying lighting. (ITE)

Lighting that supports pedestrian access to and from bus stops, as well as visibility for waiting bus passengers is highly encouraged. When possible, SEPTA places bus stops in locations where lighting is provided. Lighting should be considered as part of implementing SEPTA’s *Bus Stop Design Guidelines*.

Attractive and appropriately sized street lighting fixtures are an important design element to consider during land development review. Where light pollution is a concern, the minimum amount of lighting needed for safety should be provided. In suburban areas with a higher density or level of traffic, an increased level of lighting may be appropriate for safety considerations.
More energy efficient light fixtures are being developed every day. LED lighting technologies have advanced considerably in recent years offering significant energy cost savings with the long term operation of these fixture types versus traditional bulbs.

Recommendations

- For roadway lighting, follow the recommendations of PennDOT Design Manual Part II: Highway Design: Chapter 5 – *Lighting*; and, the Illuminating Engineering Society of North America (IESNA), *Roadway Lighting*.
- For parking facility and other site lighting, follow the guidance contained in the Illuminating Engineering Society of North America (IESNA) *Lighting Handbook*.
- Municipalities should ensure their lighting ordinance addresses the following criteria: illumination levels, lighting fixture design, control of nuisance and disabling glare, installation, energy efficiency, and light pollution/trespass.
- Site lighting should be directed inwardly from the periphery of a site to minimize the off-site impacts of lighting such as reducing glare and visual impacts on the adjacent roadways and adjoining land uses while providing for lighting that is sufficient for the safe use of a property. All lighting shall be aimed, located, designed, fitted and maintained so as not to present a hazard to drivers or pedestrians by impairing their ability to safely traverse and so as not to create a nuisance by projecting or reflecting objectionable light onto adjacent properties, past the object being illuminated, skyward, or onto a public roadway.
- Municipalities should require that a lighting plan be submitted with the preliminary development plan applications.
- The design of light fixtures should be consistent with the character of the area, the specific lighting application, and should otherwise comply with the Uniform Construction Code.
- Energy-efficient lighting design and operation should be used wherever possible.
- All exterior lighting shall meet IESNA full-cutoff criteria.

For more information regarding the effects of light pollution, please refer to the International Dark-Sky Association website at www.darksky.org.
Chapter 3
Design Elements

Chapter 3
Design Elements

Noise Control

Also known as: Sound walls or vegetated buffers

Definition
The control of unwanted sound coming from the roadway.

Standards
AASHTO (A Policy of Geometric Design of Highways and Streets) – Efforts should be made to minimize the radiation of noise into noise-sensitive areas along the highway. Reducing noise can be accomplished by building an earthen or concrete barrier between the noise source and the receiver. Shrubs, trees, or ground covers are not very efficient in shielding sound because of their permeability to air flow. However, almost all buffer plantings offer some noise reduction, and exceptionally wide and dense plantings may result in substantial noise reductions. Noise reduction should be considered in the early design stages and the terrain should be taken into advantage in forming a natural barrier so that the appearance is aesthetically pleasing.

PennDOT: Use AASHTO Standards for earthen berms/landscape screens. For sound wall/noise barriers, see PennDOT Publication 24: Project Level Highway Traffic Noise Handbook

Comments
Screening and buffering devices such as raised earthen berms with landscaping, staggered landscaping within a designated buffer area and fence or wall structures, are effective for many uses. They are predominantly used to:

- reduce noise;
- provide privacy for dwelling units;
- separate incompatible land uses;
- shield unattractive structures from view;
- reduce light infiltration and glare; and,
- create visually appealing views, vistas and space.

When considering noise abatement measures it is important to recognize that it is more cost-effective to include them in the original design plan than to add them afterwards. Also, the use of existing, mature vegetation can properly enhance screened and buffered areas.
The installation of sound walls along a highway are determined by PennDOT’s Noise Abatement Process, as outlined in their Project Level Highway Traffic Noise Handbook. The following are excerpts from the PennDOT brochure “Sound Decisions About Highway Noise Abatement”:

What Projects Are Eligible?

Only certain highway improvement projects are eligible for noise mitigation in Pennsylvania. These projects have the potential to alter the acoustical environment and are analyzed for noise impacts and abatement is considered. The scope of these types of projects include highways on new locations, substantial alteration of either the vertical and/or horizontal alignment on existing highways, and various other improvement projects, including certain auxiliary lanes, weigh stations, rest areas, etc.

For eligible projects, there is a specific process that PennDOT uses to identify communities that will be considered for noise abatement and to determine whether noise abatement measures can be implemented within state or federal guidelines. This process includes the following steps:

1. **Determine which land-uses in the project could be affected by the project** – The Federal Highway Administration (FHWA) has established noise abatement criteria for various land uses which PennDOT uses to determine impacts and where abatement consideration is warranted. Locations such as residences, libraries, houses of worship, hospitals, schools and parks are often the most common land uses that receive abatement consideration.

2. **Monitor Noise Levels** – After noise-sensitive locations that may be affected by the proposed highway project have been identified, existing traffic noise levels are monitored at locations that are representative of affected neighborhoods. The results of the monitoring sessions are used to ensure that the noise prediction model will provide accurate results.
3. **Noise Modeling** – Computer modeling is performed with the FHWA TNM Model to assess future conditions in light of the proposed improvements. Noise projections are made for the worst-case future build condition using forecasted traffic information 20 years in future when the highway is at its maximum capacity.

4. **Noise Abatement Consideration** – PennDOT must determine that noise abatement measures are warranted, feasible, and reasonable at noise-sensitive areas.

 - To determine whether abatement consideration is warranted, the noise modeling projections are compared to noise impact criteria for the land use. Using criteria based on FHWA guidelines, abatement is warranted if the future noise levels approach or exceed the noise abatement criteria or are elevated by 10 decibels [dB(A)] above the existing conditions.

 - Feasible noise barriers are those that provide at least 5 dB(A) of noise reduction to noise sensitive locations and pose no safety, engineering, or access restrictions.

 - For a barrier to be reasonable it must be cost effective and maintenance, constructability, drainage and utility impacts, as well as the desires of the affected residents, must be considered.

Recommendations

- Consider the unique characteristics of a site when conducting the site analysis and design.

- Provide an adequate right-of-way for the screening and buffering of incompatible land uses, reverse frontage lots and residential areas along highways.

- Incorporate existing, mature vegetation into the design. Transplant existing trees whenever possible rather than destroy them.

- For sound walls, follow the guidance of PennDOT Publication 24: *Project Level Highway Traffic Noise Handbook*.

- Provide some form of a vegetative treatment to soften the appearance of concrete barriers if they are used.

Noise wall between PA 100 and adjacent neighborhood.
(Page intentionally left blank)
Parking

Parking lots are critical linkages between the transportation system and destinations. A poorly designed parking lot that does not accommodate all modes can single handedly discourage alternative modes. A well designed parking lot can transform a development into a vibrant welcoming space.

Excess parking has many direct and indirect costs. Direct costs for developers include the purchase of additional land, improvement and added maintenance costs, and property taxes. Indirect costs to a developer, but more direct costs to the environment include heat island generation and the excess stormwater runoff and loss of ground water recharge areas created by the added impervious surfaces.

Parking availability can affect not only the destination, but also the means people will use to reach a destination. The more difficult it is to find available parking, the less likely people will drive their automobiles to a destination. Lack of available parking also makes it more likely that people will utilize public transit, if it is available and relatively convenient. If there is a consistent abundance of available parking, it may indicate the parking lot is too large.

Many off-street parking lots for commercial areas have traditionally been designed to accommodate the maximum parking loads and predominant use of single occupancy vehicles. Balancing the demands of the private sector to provide sufficient parking with the municipality’s desire to reduce the harmful impacts of excess parking is an issue many municipalities must contend with in new developments.

Determining the proper size, location, and layout of parking facilities are important decisions that municipalities must make to provide the most appropriate level of parking within a municipality. Facility types generally include off-street surface parking, on-street parking, and structured parking (parking garages).

Walkways are an integral part of parking lot design.
Comments

Parking facility design must reflect many factors including the amount of space available for the facility, the number of parking spaces required by the destination's land use, environmental and site specific conditions. The following provides general design principles and guidance regarding the physical elements to be addressed when developing parking facilities.

Site Work – Basic design principles to consider when deciding where parking facilities should be located include:

- Locate parking areas convenient to building entrances;
- Minimize extensive grading operations by designing with the topography;
- Slope parking areas between a minimum of 1% and a maximum of 5%, with an ideal slope of 2%;
- Create multiple smaller parking areas rather than one large mass;
- Integrate planted islands to increase aesthetics and improve runoff collection opportunities;
- Use topography and trees to mitigate negative visual impacts;
- Minimize negative impacts on the natural environment such as the unnecessary removal of mature vegetation or compromising soil stability; and,
- Utilize rectangular parking area configurations to minimize land area requirements.

Number of Spaces – The Delaware Valley Regional Planning Commission (DVRPC) developed the publication *The Automobile at Rest: Toward Better Parking Policies in the Delaware Valley*, which inventories the parking standards of all Chester County municipalities and offers the following policy recommendations towards establishing a proper amount of parking spaces:

- Conduct an inventory of parking usage at various locations, times, and days to gauge whether excess parking is supplied for certain uses;
- Revisit number of parking space requirements in ordinances to ensure that required parking supply does not exceed demand and is sensitive to the local context. The following table – excerpted from *SmartCode (Version 9.2)*, a new urbanist model transect-based unified development ordinance – suggests parking requirements for different use types across the transect of land use types ranging from rural to urban core:
• Provide alternatives to conventional parking standards by allowing by-right, flexible parking provisions such as shared parking, reserve parking, and fee-in-lieu parking; and,

• Identify areas where a unique context, such as proximity to transit or an historic village setting, indicates the need for specialized standards such as parking

Pedestrian and Vehicular Circulation – The orientation and configuration of parking spaces must be considered early in the development process to create a safe and convenient facility:

• Circulation systems should be designed to minimize the number of conflicts between vehicular, bicycle, and pedestrian traffic;

• Pedestrian circulation should always have a higher priority than vehicular circulation;

• Rows of parking spaces should be aligned perpendicular to the facility it serves to minimize the number of pedestrian crossings of driveway aisles;

• All off-street parking facilities should be accessible without backing into or otherwise re-entering a public right-of-way;

• Customer and employee parking areas should be separated when applicable to allow for better turnover nearest the main facility entrance;

• Turning radii should be provided to accommodate the largest vehicles that will utilize the facility, such as refuse haulers, buses, and tractor trailers; **See also VEHICLE CHARACTERISTICS design element.**

• Parking rows should be located on each side of a driveway aisle for paving efficiency;

• End islands, whether painted or curbed, are useful in several respects. An important one is to delineate the circulation road edge. Of equal importance is providing adequate sight distance for vehicles leaving the parking aisles;

Smart Code Parking Requirements

<table>
<thead>
<tr>
<th>Land Use</th>
<th>Number of Spaces</th>
<th>T2 Rural</th>
<th>T3 Suburban</th>
<th>T4 General Urban</th>
<th>T5 Urban Center</th>
<th>T6 Urban Core</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residential</td>
<td>2.0/dwelling</td>
<td>1.5/dwelling</td>
<td>2.0/dwelling</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lodging</td>
<td>1.0/bedroom</td>
<td>1.0/bedroom</td>
<td>1.0/bedroom</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Office</td>
<td>3.0/1,000 sq. ft.</td>
<td>3.0/1,000 sq. ft.</td>
<td>2.0/1,000 sq. ft.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Retail</td>
<td>4.0/1,000 sq. ft.</td>
<td>4.0/1,000 sq. ft.</td>
<td>3.0/1,000 sq. ft.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Source: Table 11 – SmartCode Version 9.2
• Dead end parking areas should be avoided whenever possible; and,
• Transit stops should be sited at a central location with walkways leading to all facility entrances to achieve a balance between multimodal accessibility and transit route efficiency.

Distributor Roads – In larger commercial and office developments there should be a hierarchy of travel lanes ranging from a ring road, or distributor road to parking aisles. Providing for different types of traffic improves circulation and reduces the potential for accidents.

The distributor road which is intended to carry higher speed and higher volumes of traffic throughout the development should have wider lanes, no parking, and should directly link the parking area to the public street. Distributor roads carry traffic at speeds of 10 to 20 MPH while parking aisles function at speeds of less than 10 MPH.

The intended function of the roadway immediately adjacent to a building is to be the fire lane and pick-up/drop-off area. It should not be used as a distributor road for through traffic.
Off-Street Parking

Off-street parking is the most common type of parking facility. These facilities have traditionally been developed as one large paved area resulting in expanses of asphalt. Most of these traditional lots were developed prior to the passage of modern stormwater regulations. Parking lot designers should limit the places where pedestrians are forced to cross vehicular traffic, and reduce redundant driveways, inefficient single stacked parking bays, locations where cars need to back into intersections, limit vehicular stops and turning movements, as well as consider appropriate locations for trash enclosure pads with regard for trash vehicle turning radii.

One of the first decisions to make when designing a parking facility is to determine the safest and most efficient configuration of the available space to meet the parking requirements. There are a number of different parking angle configurations to be considered, including perpendicular (or 90 degree) and other angled (60, 45, 30 degrees) options. The following provides basic descriptions and dimensions including the advantages and disadvantages for each configuration type:

Perpendicular (90 degree) – This is the most efficient and economical parking configuration because it accommodates the most vehicles per square foot of available parking area. Perpendicular configurations work best with two-directional driveway aisles; one way drive aisle configurations have almost the same space requirements and offer little advantage in circulation. Standard dimensions for this configuration are 9 foot wide by 18 foot deep spaces with a 24 foot wide (two-directional) driveway aisle for a total 60 foot wide cross section.

Advantages:
- Handles the most vehicles per square foot of available space
- Handles most vehicles per linear foot along a driveway

Disadvantages:
- Requires the widest dimension (60 ft) for a double bay
- Difficult maneuvering for some drivers compared to other angled options

OFF STREET PARKING
(On-lot parking) - A space located off the public right-of-way for parking a motor vehicle.
Angled—60 Degree – The primary advantage with any angled parking is the ability to provide more spaces or better circulation patterns when the space available for parking is dimensionally constrained. The 60 degree angled parking configuration is ideal for a fast turnover rate or predominantly short term use and may be preferred over 90 degree parking in some situations due to ease of navigation, even though it may be a less efficient use of the available space. Standard dimensions for this configuration are 9 foot wide by 20 foot deep spaces with a 24 foot wide (two-directional) driveway aisle for a total 64 foot wide cross section, or 16 foot wide (one-directional) driveway aisle for a total 56 foot wide cross section.

Advantages:
- Easy maneuvering in and out of parking spaces due to better visibility
- Lends itself to either one-or two-way aisles
- Works best with short term and high turnover situations

Disadvantages:
- Requires more pavement per vehicle than perpendicular configurations
- Handles fewer vehicles per linear foot

Angled—45 Degree – The 45 degree angled parking configuration displays similar benefits and limitations as the 60 degree configuration. Standard dimensions for this configuration are 9 foot wide by 19 foot deep spaces with a 14 foot wide (one-directional) driveway aisle for a total 52 foot wide cross section. Two-directional driveway aisle dimensions are not provided since two-directional 45 degree parking requires almost the same amount of cross section width as 90 degree configurations while providing significantly fewer spaces.

Advantages:
- Reduced width requirements
- Easy maneuvering in and out of parking spaces
- Good rear visibility

Disadvantages:
- Does not work well with two-way aisles
- Requires more pavement per vehicle than both 90 and 60 degree parking configurations

Angled—30 Degree – Similar to 45 degree configurations, this configuration progressively increases the amount of pavement required per space while narrowing the double bay cross section. Standard dimensions for this configuration are 9 foot wide by 16.5 foot deep spaces with a 12 foot wide (one-directional) driveway aisle for a total 45 foot wide cross section.
Advantages:
- Easiest spaces to back out from a visibility standpoint
- Least required width for double bay cross section

Disadvantages:
- Requires the most pavement per vehicle parking space
- Does not work well with two-way aisles

Landscaping – The most attractive, most functional, and most sustainable parking areas are those that are well landscaped. Trees provide valuable additions to parking areas, whether planted in curbed islands or located on the parking area perimeters. Trees provide shade, visually reduce the mass of open pavement, and mitigate heat gain. Landscaped areas may be used to collect runoff for stormwater management. The following are some general considerations for how plant materials can be used to improve parking facilities:

 - Provide internal parking islands to break up large expanses of paving and reduce the heat island effect;
 - Provide appropriately-scaled, well-graded and planted earthen berms or mounds around parking area perimeters to screen the parking area from streets and other facilities; and,
 - Minimize the use of medium to tall shrubs on internal curbed parking islands to allow for greater visibility within a parking area

Other factors to consider:
- Parking areas are not conducive to healthy plant growth due to reflected sunlight, heat gain, and exhaust fumes. Only plant species that are tolerant of these extreme conditions should be used.
- Non-porous pavement limits the oxygen and water exchange between plant roots and the atmosphere. Soil compaction resulting from construction amplifies these conditions for existing trees. Consider the use of porous pavements and existing tree protections during construction of these facilities to promote plant health.
- Curbing should be used for planted islands where appropriate to protect against trunk damage created by vehicles.
- In addition to providing curbing and/or bumper blocks, ensure that parking spaces provide sufficient separation from trees and shrubs to avoid damage.
- Native plant species should be selected whenever possible.
- Clear sight distance should be provided at all intersections/driveway entrances. Low level plantings in parking islands should remain low and not distract sight lines within a parking lot.
Avoid the following with respect to tree plantings:
• trees with messy fruits or berries;
• brittle-limbed species;
• spreading root systems;
• large leafed deciduous trees that can clog drains and make walking hazardous; and,
• trees susceptible to insects and diseases.

Trees that should be selected include those that:
• cast medium to dense shade in summer;
• have normal life spans over 60 years;
• thrive in pollution and in the heat of a typical urban environment;
• demonstrate salt and de-icing compound tolerance;
• require little pruning and are structurally sound; and
• are resistant to insects and diseases.

See also LANDSCAPE MATERIAL design element.

Lighting – Lighting is an important component of parking lot safety, especially for a facility that has early morning, late afternoon, or night time use. The Illuminating Engineering Society (IES) recommended minimum average illumination level for a surface parking lot is 0.5 footcandles. The IES also recommends that all pedestrian routes and entrances/exits should be well lit with a minimum average of 1.0 footcandles. Lighting poles are typically 20-25 feet in height, and should be located in islands or in parking perimeters and protected from potential vehicular damage.
Other lighting factors to consider include:

• Lights should be pointed downward to minimize light pollution and excess glare. Cutoff fixtures should be used to avoid light spilling onto neighboring properties.

• Bulb selection will affect the color of light projected. High pressure sodium bulbs are relatively inexpensive, yet cast an orange hue while more expensive metal halide bulbs cast more of a white light.

• LED fixtures are now becoming more widely used as the technology for these fixtures has advanced to provide much brighter fixtures. The energy required to power LED fixtures is considerably less than standard bulbs resulting in significant cost savings.

See also LIGHTING design element.

Stormwater Management – Surface parking lots have traditionally been developed with large expanses of asphalt resulting in a significant increase in stormwater runoff. The stormwater was then collected by a drainage system where runoff from large storm events would be temporarily stored in a retention basin then slowly released through control structures into the natural drainage systems. This general concept has been revised and reflected in Pennsylvania through the State’s adopted erosion and sediment control regulations where the focus is to infiltrate or recharge a much larger portion of this runoff into the ground. As part of this shift, the National Pollutant Discharge Elimination System (NPDES)—as authorized by the federal Clean Water Act—now requires a permit for any earth disturbance exceeding 1 acre, where the threshold was previously 5 acres. These permit applications are reviewed by the local Conservation District as part of the land development process.

To help facilitate these new regulations, the state has published the Pennsylvania Stormwater Best Management Practices Manual. Some examples of Best Management Practices (or BMPs) applicable to surface parking include:

• Pervious Pavement with Infiltration Bed
• Infiltration Basin
• Subsurface Infiltration Bed
• Infiltration Trenches
• Rain Garden/Bioretention Areas
• Vegetated Swales and Filter Strips

Example of vegetated bioswales within parking islands at Riverfront Park, Pottstown, PA.
Chapter 3
Design Elements

INFRASTRUCTURE & AMENITIES

Shared Use Parking – ‘Shared Use’ parking is the approved use of the same off-street parking spaces for two (2) or more uses where peak parking demand of the different uses occurs at different times of the day, or, where various uses are visited without moving the automobile; and, where the division of parking spaces is a net decrease from the combined total of individual off-street parking requirements for each use.

Municipalities should consider possibilities for shared parking facilities based on operating hours and peak parking times for adjacent or nearby uses. Through the use of shared parking facilities, a lower overall number of parking spaces may be justified. Municipalities should be assured that adequate parking facilities for all uses will continue in the long-term and be available regardless of individual land use changes.

Areas where excess parking is provided should be considered for use as a park and ride facility for public transportation. See also the PARK-AND-RIDE design element.
On-Street Parking

Standards

AASHTO: The minimum width of a parking lane is 8 feet. The desirable width is 10 to 12 feet.

PennDOT:

- Arterial: Ten foot minimum, 12 feet desirable, 9 feet if used as a turning storage lane and average running speed is less than 40 MPH. Eight feet is acceptable if that lane will not be used as a traffic lane in the foreseeable future.
- Collector: Seven to 10 feet on both sides with two 11-foot travel lanes. Eight to 10 feet in commercial and industrial areas.
- Local: Seven to 10 feet on both sides with one 10-foot travel lane, depending on lot size and intensity of development. The desirable minimum is 8 feet.

Standard dimensions for on-street parallel parking spaces are 8 feet wide by 22 feet long and placed at least 50 feet from any intersection.

See also the LANE DESIGN design element

Comments

It can generally be stated that on-street parking decreases through capacity, impedes traffic flow and increases accident potential (AASHTO). From a comprehensive review of accident data, curb parking is directly or indirectly responsible for at least one out of every five accidents that occur on surface streets in our cities each year (ITE). While this applies to the nation’s urban centers it must be taken into account when designing on-street parking anywhere.

The type of on-street parking selected should depend on the specific function and width of the street, the adjacent land use and existing and anticipated traffic volumes.

On-street parking is most commonly associated with urban or village landscapes and is often metered as a revenue generator as part of a community’s parking management program. On-street parking spaces are typically included in the design of the roadway within which they are located and also referred to as 'parallel' parking.

On-street angled parking is less common and often associated with historic or central business districts with lesser traffic volumes where it also serves as a traffic calming effect. These installations require much more space within the road right-of-way than parallel parking but offer the opportunity to create more stalls within the same length.
Back-in angled on-street parking has recently been installed in the Borough of Pottstown, Montgomery County, PA. This installation on East High Street converted two westbound travel lanes and on-street parallel parking into one westbound lane, one bike lane and back-in angled parking within the same available space. Installed in 2003, this concept “has helped revitalize the downtown by slowing traffic, providing more parking spaces adjacent to stores, encouraging bicycling, and making it easier for pedestrians to cross the street.”

ADA Accessibility & Parking Requirements
The Americans with Disabilities Act (ADA) Accessibility Guidelines for Buildings and Facilities requires that the construction of all new facilities shall provide at least one accessible route within the boundary of the site from public transportation stops, accessible parking spaces, passenger loading zones if provided, and public streets or sidewalks, to an accessible building entrance. And, at least one accessible route shall connect accessible buildings, facilities, elements, and spaces that are on the same site. The accessible route shall be a minimum of 36 inches wide. The routes should be as close to the designated handicapped parking spaces as possible. See also the ADA ACCESSIBILITY design element.

The minimum number of accessible parking spaces to be provided is based on the total number of spaces included:

<table>
<thead>
<tr>
<th>Total Parking Spaces in Parking Lot</th>
<th>Minimum Handicapped Spaces Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>Less than 26</td>
<td>1</td>
</tr>
<tr>
<td>26-50</td>
<td>2</td>
</tr>
<tr>
<td>51-75</td>
<td>3</td>
</tr>
<tr>
<td>76-100</td>
<td>4</td>
</tr>
<tr>
<td>101-150</td>
<td>5</td>
</tr>
<tr>
<td>151-200</td>
<td>6</td>
</tr>
<tr>
<td>201-300</td>
<td>7</td>
</tr>
<tr>
<td>301-400</td>
<td>8</td>
</tr>
<tr>
<td>401-500</td>
<td>9</td>
</tr>
<tr>
<td>501-1,000</td>
<td>2% of total</td>
</tr>
<tr>
<td>Over 1,000</td>
<td>20+1 for each 100 over 1,000</td>
</tr>
</tbody>
</table>

Accessible parking spaces serving a specific facility should be located closest to an accessible entrance. If facilities have multiple accessible entrances, accessible parking spaces should be dispersed and located closest to the accessible entrances.
Accessible parking spaces should be at least 8 feet (96 inches) wide. Parking access aisles should be part of an accessible route to the facility entrance. Two accessible parking spaces may share a common access aisle at least 5 feet wide, with the potential for the aisle to be 8 feet minimum width if shared with accessible van parking. Parked vehicle overhangs should not reduce the clear width of an accessible route. Parking spaces and access aisles should be level with surface slopes not exceeding 1:50 or 2% in all directions. Signing for parking spaces should be placed on the paving surface and meet the requirements of the law.

Source: ADA Accessibility Guidelines for Buildings and Facilities

ADA accessible parking.
Structured Parking

Parking garages are most commonly associated with densely developed urban centers and represent a significant investment in providing for a parking facility. They may also be developed at locations that have a significant draw with little or no additional space available to provide for more surface parking to meet the parking demands. Examples of such locations include transportation centers, rail stations, shopping malls & centers, and significant employment centers.

There are many design factors to consider for structured parking, including:

- The size and shape of the lot where the structure will be developed.
- Who the primary users of the facility will be.
- Connections to the adjacent street network.
- The architectural style of the structure’s facades and how they may relate to existing adjacent structures.
- A municipality may also look for shared use opportunities—SEPTA’s West Chester Transportation Center was incorporated into the newly constructed parking garage developed by Chester County across from the Justice Center on Market Street.
Chapter 3
Design Elements

Recommendations

• Recommend use of ITE’s, *Parking Generation and Guidelines for Parking Facility Location and Design: A Recommended Practice* as a starting point to establish parking requirements. Requirements of adjoining uses should be considered for possible sharing.

• Follow the recommendations of the DVRPC publication *The Automobile at Rest: Toward Better Parking Policies in the Delaware Valley*, to further refine the actual parking demand and number of spaces to be provided for the proposed use.

• Trees and other landscape materials should be provided for all off-street parking lots. A good ratio for determining the appropriate number of trees would be one tree for every 3-5 parking spaces required. Landscape materials should be planted so as to not interfere with required clear sight distances at plant maturity.

• Adequate lighting should be provided in parking lots for facilities with night time uses to ensure safety and security. Cutoff fixtures should be used to avoid light pollution and spillage onto adjacent uses. Energy efficient bulbs should be considered for long term cost savings.

• Developers and municipalities should utilize stormwater BMPs such as porous pavement, planted islands, rain gardens, and others whenever possible to reduce and infiltrate stormwater runoff.

• Permit shared use parking facilities which may reduce the number of required parking spaces and associated impervious coverage. Shared parking is particularly useful when two land uses have different peak parking demands.

• Residential parking should be off-street whenever possible. Streets bordering large lots do not require on-street parking because vehicles are accommodated on the property while streets bordering smaller lots usually require some form of on-street parking.

• Follow the regulations of the Americans with Disabilities Act Accessibility Guidelines for *Buildings and Facilities* (Chapter 2, section 208); and, *Transportation Facilities* (Chapter 5, section 502)

• Municipalities that need to provide structured parking should consider not only the development costs but also the long term operation and management of such a facility.
INFRASTRUCUTURE & AMENITIES

(Page intentionally left blank)
Setbacks & Building Placement

This design element addresses how the factors of setbacks and building placement affect the size and placement of multimodal transportation infrastructure and create a comfortable human environment within a site development.

Setbacks

A setback is used to create a buffer area which protects buildings or structures from the road by mitigating noise levels, by providing a safety zone and by improving aesthetics through landscaping or screening. Setbacks are a function of the area type, land use and the functional classification of the road.

The setback area and the right-of-way buffer area do not serve the same function. Setbacks are not intended to accommodate the future widening of the road therefore they should be measured from the ultimate right-of-way. See RIGHT-OF-WAY ULTIMATE design element. If no ultimate right-of-way exists, then setbacks should be measured from the existing right-of-way. The use of a setback measured from the ultimate right-of-way allows for the future expansion of a road while preserving the property and the building values when the road is widened.

Recommendations

- On roads of similar classification, there should be consistent setback in all adjacent zoning districts.
- Setback values should be determined according to the functional classification of the roadway.
- The following chart is suggested as a reference in determining setbacks. The process of determining setbacks is complex. This chart should only be used as a guide:

<table>
<thead>
<tr>
<th></th>
<th>Growth Area</th>
<th>Rural Areas</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RES</td>
<td>COM</td>
</tr>
<tr>
<td>Arterial</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>Collector</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>Local</td>
<td>10</td>
<td>10</td>
</tr>
</tbody>
</table>

RES: Residential COM: Commercial IND: Industrial OFF: Office
Chapter 3
Design Elements

BUILDING PLACEMENT
The relative location of a building or buildings and other site elements on a lot or property.

Chapter 3
Design Elements

INFRASTRUCTURE & AMENITIES

Building Placement
How a building looks, its placement on a site and its relationship to adjacent structures and the immediate surroundings are some of the most significant influences on the character of any community or development (Pennsylvania Standards for Residential Site Development, Pennsylvania Housing Research/Resource Center, 2007).

According to the PHRC, the following factors should be considered when placing buildings on a site:

- Setbacks
- Orientation
- Building Design
- Lot Size

While these may be the primary factors for determining where buildings are placed, the relationship between the buildings and the circulation system utilized to access the building(s) is another factor that should be considered towards the creation of outdoor ‘spaces’ and a comfortable human scale environment. Parking lots, driveways, walkways, trails, etc. not only provide access to, but also limit where people may congregate in the outdoor environment.

For example, a design principle of many corporate parks constructed in the 1980’s era placed the parking, main building entrances, and any pedestrian walkways on the opposite side of the buildings from the primary road frontage. While the design intent may have been to create the look of a green campus-like environment, the lack of pedestrian facilities on the frontage side results in a relatively sterile exterior due to a lack of apparent...
human activity. There is simply no way to tell if these developments are full of life or if they are completely empty since the frontage always has the same appearance. This appearance has a direct effect on the marketability of the space within those buildings.

Successful developments achieve a balance between the functionality of the vehicular circulation system and the comfort and safety of the pedestrian environment, including minimizing conflict points. The sooner one may enter a comfortable pedestrian environment connecting to a building from the time they exit their car, the better the human experience will be for that development.

Building heights are another factor affecting the pedestrian experience. According to ITE’s *Designing Walkable Urban Thoroughfares: A Context Sensitive Approach* “Buildings are the primary feature of urban contexts that create a sense of definition and enclosure on a thoroughfare—an important urban design element that helps create the experience of being in a city and in a place that is comfortable for pedestrians. The threshold when pedestrians first perceive enclosure is a 1:4 ratio of building height to thoroughfare width—typical of low density environments. In denser urban contexts, height-to-width ratios between 1:3 and 1:2 create an appropriate enclosure on a thoroughfare.

![Illustration of height to width ratios that create a scale on thoroughfares that is comfortable to people and encourages walking (human scale). Human scale ratios fall between 1:3 and 1:2 as measured from the building fronts.](source: CCPC, 2015)
While building heights and the inter-relationship of multiple buildings plays a significant role in creating outdoor spaces, pedestrian environments require the combination of subtle yet effective barriers such as curbing, fences, railings, bollards, planting beds and/or trees to provide the necessary separation from vehicular circulation to create a safe and comfortable space.

Recommendations

- Always consider the relationship between building placement and both pedestrian and vehicular site circulation and how it will impact not only safety but also the pedestrian friendly experience of the development.
- Provide for outdoor gathering spaces where appropriate, particularly in commercial and employment centers, urban centers, and suburban centers. These spaces help to create the appearance of vitality within a development.
Employment center with rear entrances and parking, no pedestrian facilities along frontage.

Ground level view of the employment center.
(Page intentionally left blank)
Signage (Non-Traffic Related)

Also known as: Advertising signs.

Definition
An outdoor sign, display, light, figure, painting, drawing, message, plaque, billboard or other thing which is designed, intended or used to advertise or inform.

Standards
PennDOT: Recommended use of the Pennsylvania Code, Title 67, Chapter 445, “Outdoor Advertising Devices,” for properties adjacent to the right-of-way of the interstate and Federal aid primary system

Comments
The location of signs should never present unnecessary hazards for pedestrians or vehicular traffic. When possible gather signs together into a unified system. Signs should always be placed to allow for the maximum amount of sight distance. They should not be located directly in the driver’s line of sight, especially at intersections. The scale and placement of the sign should also be sensitive to the context of its location.

Recommendations
• Follow the recommendations of the Pennsylvania Code, Title 67, Chapter 445, Outdoor Advertising Devices for properties adjacent to the right-of-way of the interstate and Federal aid primary system.
• Prohibit signs within clear sight triangles, except for traffic signs.
• Limit the number of signs to one per property. Any joint use properties with more than one principal use should use a freestanding sign to consolidate all the individual signs. The height of free-standing signs should not exceed the distance from the base of the sign to the cartway or to buildings.
• Consolidate signs on adjoining properties where practical.
• No advertising signs should have blinking lights or lights that simulate a traffic signal nor should they use the words “stop,” “look,” or “danger” or any other word which attempts to direct traffic within 500 feet of an intersection.
• Municipalities should regularly review and consider amending their sign ordinance(s) to address changing issues.
Examples of non-traffic related signage adjacent to the roadway.
Boulevard

Definition
A type of street having the opposing travel lanes separated by a landscaped median. Also known as a divided street or highway.

Comments
Boulevards provide a method of separating opposing traffic flows for residential areas, commercial, institutional, and industrial developments. They should extend as far as the first intersection within the development. A boulevard median should not be included in the calculation of the cartway width, but should be included in the calculation of the right-of-way width.

The provision of separated, two-lane cartways allows for access to a development if one of the cartways is closed due to an emergency. The unobstructed lanes can be used for two directional travel. Often, an entrance to a development is designed with a boulevard treatment that is not functional because it only separates the cartway for a short distance. If the cartway is obstructed beyond the separated boulevard and no other access point exists, then all access to the development is cut off.

An entrance road designed as a landscaped boulevard is an attractive feature found in many of the successful cluster subdivisions. While this might not be appropriate in rural areas where the location and entrance to the subdivision should be more subtle, it works well in suburban or transitional areas.

Recommendations
- A boulevard design should be utilized in cases where a second access or emergency access cannot be provided to a development.
- A recommended minimum width, preferably 6-8 feet, should be established for a boulevard median.
- A recommended minimum single lane width of 11 feet (uncurbed) or 13 feet (curbed) for each cartway in residential areas and 15 feet (uncurbed) or 16-18 feet (curbed) for each cartway in commercial areas, should be established.
- Extend a boulevard to the first intersection within the development. Median breaks may be permitted 200 feet from the beginning of the boulevard. This restriction exists due to minimum values for sight distance, vehicle stacking and corner clearance.
- Limit the number of cross-overs to avoid potential conflicts.
• Choose a landscaping treatment in the median that avoids sight distance problems. PennDOT typically does not permit trees to be planted within medians in PennDOT rights-of-way.

• Determine median maintenance responsibilities prior to plan approval.

• No parking should be permitted along boulevards.

Boulevard
Chapter 3
Design Elements

VEHICULAR CIRCULATION

Boulevard entrance in Kennett Township.

Boulevard entrance in Upper Uwchlan Township.
(Page intentionally left blank)
Cul-de-sac & Spur Roads

Cul-de-sac

Standards

AASHTO: A 30-foot minimum radius. Use mountable curbs in residential areas if the cul-de-sac has less than a 47-foot radius with a central island. A 45-foot minimum radius should be used in commercial and industrial areas.

PennDOT: Recommended use of AASHTO standards. A cul-de-sac must have a 40-foot radius to qualify for Liquid Fuels Fund.

Comments

When properly designed, a cul-de-sac can be a useful technique for dealing with certain site configurations. When improperly designed, the cul-de-sac turnaround can create huge expanses of paved area requiring additional maintenance and generating excessive stormwater runoff. Cul-de-sac turnarounds should be required to include landscaped islands in the center to reduce impervious surface and provide a more attractive view both for homes facing the cul-de-sac and for residents of the subdivision in general.

The commonly used symmetrical design operates satisfactorily and is aesthetically pleasing, but better operation is obtained if the design is off-set so that the entrance-half of the pavement is in line with the approach-half of the street. One steering reversal is avoided in this design.

The radius of a cul-de-sac should be no larger than necessary to permit free turning of the largest service vehicles regularly accessing the neighborhood. The minor inconvenience experienced by some drivers in reversing direction may not be an important consideration. If a school bus must access the cul-de-sac, larger radii should be provided. If a school bus does not have to access the cul-de-sac, smaller radii are acceptable as long as pedestrian access is provided. A smaller cul-de-sac radius minimizes impervious surfaces, decreases installation and maintenance costs, and decreases stormwater runoff. A right-of-way should be provided that is larger than the cartway radius.

A Y- or T-shaped turnaround for dead-end streets and short cul-de-sacs servicing up to 10 homes conserves land, reduces construction and maintenance costs, and permits flexibility in land planning and the siting of homes.

Using a central island minimizes impervious surfaces, provides visual relief from the pavement, provides a recharge basin for stormwater and can be used for storage of plowed snow in the winter. Mountable curbs bordering the island allow oversized vehicles to maneuver within the cul-de-sac.

CUL-DE-SAC

(Y or T-shaped or circular turnarounds or dead-end streets) A local road connected to the existing road network at only one end with a special provision for turning around at the closed end.
Ches. County Multimodal Handbook 2016

Chapter 3
Design Elements

VEHICULAR CIRCULATION

Homes at the far end of a long cul-de-sac become more isolated and difficult to reach. Therefore, the anticipated traffic volumes and the number of housing units should be considered when determining cul-de-sac length. The minimum length of a cul-de-sac must be 250 feet to qualify for funding through the Liquid Fuels Tax Fund. In some cases there are access management benefits to allowing a cul-de-sac to be less than 250 feet.

Recommendations

The following recommendations apply to cul-de-sacs which are never intended to connect with adjoining, developable properties. If a cul-de-sac is intended to connect with future developments then it should be designed to accommodate its future function.

• Recommend use of an off-set cul-de-sac to create visual variety and improve the turning ease for drivers.

• The minimum radius of a residential cul-de-sac should be 40 feet with a 50-foot minimum right-of-way. If larger vehicles access the cul-de-sac, a radius greater than 40 feet may be needed. Excessive paving should be discouraged.

• Discourage the use of cul-de-sacs in commercial and industrial developments because they become idle space that may eventually be used as a storage area.

• Use central islands within a cul-de-sac. Provide a minimum radius of 45 feet for the cul-de-sac where parking demand is minimal. Where there is a demand for parking the minimum radius should be 52 feet with a 62-foot minimum right-of-way. The central island should have mountable curbs for the occasional vehicle backup. The maintenance responsibilities of islands should be determined prior to construction.

• Generally, the minimum length of a cul-de-sac should be 250 feet. In some cases, a cul-de-sac less than 250 feet may be necessary for access management. Liquid Fuels Tax Fund regulations should be changed to allow this. The maximum length should be 1000 feet or a total of 25 single family or 50 multifamily residential units, whichever is more restrictive. This limits the number of vehicles using a single access point.

• A cul-de-sac turnaround should have a maximum grade of 4 percent. The grade of the cartway may be higher. The preferred drainage pattern is to allow stormwater runoff to go towards an intersection where the terrain permits. Central islands may be used as a place to store plowed snow.
Spur Roads

Spur roads provide for the future extension of roads into adjacent properties. They also provide better pedestrian circulation by linking neighborhoods, trails, bikeways or sidewalks and providing access from other subdivisions to commercial centers, schools or parks. Spur roads can reduce the impact of development on arterial roads by eliminating the need for new access points and by decreasing the amount of trips generated from subdivisions. Pedestrian safety is increased by separating users from unsafe roads with no shoulders or sidewalks and from high-speed arterials.

Recommendation

- A spur road should be built to complement its intended function. If it eventually serves a distribution function, it should be designed accordingly. This precludes the need for the municipality to acquire additional right-of-way in the future. It also protects the existing structures and property values.

SPUR ROADS

(Stub street, access spur, partial street) - An improved, dedicated right-of-way adjacent to a tract for future access which can be utilized to create a local access network, including additional access for the original subdivision.
Chapter 3
Design Elements

VEHICULAR CIRCULATION

A landscaped cul-de-sac turnaround can significantly reduce impervious coverage and enhance a community’s appearance.

Example of a cul-de-sac and a spur road in Caln Township.
Driveways

This design element pertains to multiple factors concerning driveways, including: classification, angle, grades, radii and width, setback from intersection, shared, sight distance, and spacing and number.

Classification

Standards

<table>
<thead>
<tr>
<th>Average Daily Traffic (ADT)</th>
<th>High Volume</th>
<th>Medium Volume</th>
<th>Low Volume</th>
<th>Minimum Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,500+</td>
<td>1,500-750</td>
<td>750-25</td>
<td>Less Than 25</td>
<td></td>
</tr>
</tbody>
</table>

See Pennsylvania Code, Title 67, Transportation, Chapter 441, "Access To and Occupancy of Highways by Driveways and Local Roads."

Comments
High-volume driveways (1500+ ADT) often require signalization for large shopping centers, multi-family residential buildings and office complexes. Medium-volume driveways (1500-750 ADT) usually do not require signalization. Typical medium-volume driveways are used in motels, fast food restaurants, service stations and small shopping centers. Examples of low-volume driveways (750-25 ADT) are small office buildings, elementary or junior high schools and car washes. Minimum use driveways (less than 25 ADT) are associated with single family residential, multi-family residential with less than five units, and duplex housing.

Recommendation

- Follow the recommendations of the Pennsylvania Code, Title 67, Transportation, Chapter 441, Access To and Occupancy of Highways by Driveways and Local Roads.

Angle

Standards
PennDOT: Ninety degrees preferred, 60° minimum, unless otherwise specified as is the case with a filling station or when site conditions dictate otherwise. When two access driveways are on the same property and used for one way operation, each driveway may be between 45° and 90°; and 30° exit driveways may be used where no median opening exists.

Comments
The angle between the driveway centerline and the roadway edge should be based primarily on safety requirements. The speed at which a vehicle can enter or leave a public roadway is affected by the angle of approach or
departure. Alternative designs are often used for relatively high entering and exiting speeds.

Recommendation

- Follow the recommendations of the Pennsylvania Code, Title 67, Transportation, Chapter 441, *Access To and Occupancy of Highways by Driveways and Local Roads*.

Angle of Driveway

![Diagram showing the angle of a driveway measured from the centerline of the roadway to the centerline of the driveway.]

The angle of a driveway is measured from the centerline of the roadway to the centerline of the driveway.

Grades

Standards

PenNDOT: Please refer to the driveway design requirements, section 441.8, page 441-25 of the Pennsylvania Code, Title 67, Transportation, Chapter 441, *Access To and Occupancy of Highways by Driveways and Local Roads*.

Comments

Vehicles entering and leaving driveways which have abrupt changes in grade must travel at extremely low speeds. For those entering, the possibility of rear end collisions on the public street is greatly increased. The driveway profile is also important with respect to how it affects potential damage to the underside of vehicles. Driveways should be 1.5 inches above the grade of the pavement to maintain proper drainage and prevent ponding.

When residential driveway grades exceed ± 10% consideration should be given to a paved parking area outside the street right-of-way. This improves snow removal operations by removing vehicles from the street.
Recommendation

- The grade of a driveway should be as close to 0.5 percent as possible. Where 0.5 percent grade is not feasible, follow PennDOT maximum grade values listed in the Pennsylvania Code, Title 67, Transportation, Chapter 441, *Access To and Occupancy of Highways by Driveways and Local Roads*.

Radii and Width

Standards

High Volume Driveway

See PA Code, Title 67, Transportation, Chapter 441

Medium Volume Driveway

<table>
<thead>
<tr>
<th>Speed</th>
<th>Single Unit Trucks and Passenger Vehicles</th>
<th>Buses and Combination Trucks</th>
</tr>
</thead>
<tbody>
<tr>
<td><45 MPH</td>
<td>MIN</td>
<td>MAX</td>
</tr>
<tr>
<td>>45 MPH</td>
<td>MIN</td>
<td>MAX</td>
</tr>
<tr>
<td>Width</td>
<td>14</td>
<td>28</td>
</tr>
<tr>
<td>Radius</td>
<td>15</td>
<td>30</td>
</tr>
</tbody>
</table>

Low Volume Driveway

<table>
<thead>
<tr>
<th>Speed</th>
<th>Single Unit Trucks and Passenger Vehicles</th>
<th>Buses and Combination Trucks</th>
</tr>
</thead>
<tbody>
<tr>
<td><45 MPH</td>
<td>MIN</td>
<td>MAX</td>
</tr>
<tr>
<td>>45 MPH</td>
<td>MIN</td>
<td>MAX</td>
</tr>
<tr>
<td>Width*</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>Width**</td>
<td>20</td>
<td>24</td>
</tr>
<tr>
<td>Radius</td>
<td>10</td>
<td>15</td>
</tr>
</tbody>
</table>

Minimum Volume Driveway

<table>
<thead>
<tr>
<th>Speed</th>
<th>Single Unit Trucks and Passenger Vehicles</th>
<th>Buses and Combination Trucks</th>
</tr>
</thead>
<tbody>
<tr>
<td><45 MPH</td>
<td>MIN</td>
<td>MAX</td>
</tr>
<tr>
<td>>45 MPH</td>
<td>MIN</td>
<td>MAX</td>
</tr>
<tr>
<td>Width</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>Radius</td>
<td>5</td>
<td>15</td>
</tr>
</tbody>
</table>

DRIVEWAY RADII

A measure of the sharpness of the corner formed by an intersecting driveway and road, independent of the angle at which the driveway intersects the road.

DRIVEWAY WIDTH

The narrowest dimension of a driveway measured perpendicular to the centerline of the driveway.
Comments
The preceding charts are recommended values. PennDOT may change the values based on site specific conditions, proposed uses, or a variety of reasons towards sound engineering judgment.

The radius should be related to the actual path of a vehicle making a right turn in or out considering the width of the adjacent street and the width of the driveway. The vehicle path should not encroach on the opposing lane during entering or exiting movements.

A larger turning radius will prevent vehicular conflicts. A radius of 75 feet could be considered on higher volume driveways where a deceleration lane cannot be constructed.

Recommendation
- Follow the recommendations of the Pennsylvania Code, Title 67, Transportation, Chapter 441, *Access To and Occupancy of Highways by Driveways and Local Roads*.
- Use a 5-foot radius on minimum use driveways within villages and on local access streets in subdivisions.

Poorly Designed Driveway
Setback from Intersection

Standards

PennDOT:
General location restrictions. Access driveways shall be permitted at locations which:

1. Sight distance is adequate to safely allow each permitted movement to be made into or out of the access driveway;
2. The free movement of normal highway traffic is not impaired;
3. The driveway will not create a hazard; and
4. The driveway will not create an area of undue traffic congestion on the highway.

Driveways adjacent to intersections. Driveways serving properties located adjacent to a highway intersection shall be subject to the following:

1. There shall be a minimum 10-foot tangent distance between the intersecting highway radius and the radius of the first permitted driveway.
2. The distance from the edge of the pavement of the intersecting highway to the radius of the first permitted driveway shall be a minimum of 20 feet on curbed highways and 30 feet on uncurbed highways.
3. Paragraphs (1) and (2) of this subsection may be waived only if the intersecting highway radius extends along the property frontage to the extent that compliance is physically impossible.
4. Access to corner lots may be restricted to only that roadway which can more safely accommodate its traffic.

Comments

All driveways shall be located, designed, constructed, and maintained in such a manner as not to interfere or be inconsistent with the design, maintenance and drainage of the highway. (PennDOT)

A deep setback between an intersection and a driveway is desirable as a safety factor to avoid traffic conflicts at intersections.

Recommendations

• General location restrictions are found in the Pennsylvania Code, Title 67, Transportation, Chapter 441, Access To and Occupancy of Highways by Driveways and Local Roads.

DRIVEWAY SETBACK FROM INTERSECTION
(aka driveway distance from intersection or corner distance) - The distance from the edge of the pavement of the intersecting roadway to the tangent of the radius of the first driveway.
Chapter 3
Design Elements

VEHICULAR CIRCULATION

- Follow the recommendations of the Institute of Transportation Engineers (ITE) for specific dimensions.
- Access to corner lots should be to the lesser order street and located at the property line most distant from the intersection.

See also **DRIVEWAY SPACING AND NUMBER**

Shared Driveway

Standards
AASHTO & PennDOT: 2-3 dwelling units per shared driveway

Comments
An economical and attractive method of serving a few homes while minimizing the number of driveways is through a shared or joint-use driveway. This is a privately owned and maintained, paved access which terminates at the last home. The width of the driveway should be wide enough for two cars to pass. PennDOT requires that a shared driveway be built to public road standards when it accesses a state highway and serves more than three dwelling units.

Recommendations
- Create shared or joint-use driveways to reduce the number of access points along a roadway.
- Follow the recommendations of the Pennsylvania Code, Title 67, Transportation, Chapter 441, *Access To and Occupancy of Highways by Driveways and Local Roads*, with some adjustments.
- A shared driveway serving only two dwelling units should be a minimum of 10 feet wide as long as a paved pullover area is provided. The location of the pullover area should be based on reasonable sight distance.
- Allow no more than three dwelling units to gain access to a private driveway.
- When more than three dwelling units access a single driveway, it should be built to public road standards.
- Resolve maintenance responsibilities through easements, deeds or letters of agreement.

DRIVEWAY SHARED
(aka joint use driveway) -
A driveway constructed to provide access to multiple properties.
Sight Distance

Standards

For Passenger Cars and Single Unit Trucks Exiting from a Driveway onto Two-Lane Roads

<table>
<thead>
<tr>
<th>Posted Speed</th>
<th>Safe Sight Distance – Left*</th>
<th>Safe Sight Distance – Right*</th>
</tr>
</thead>
<tbody>
<tr>
<td>25 mph</td>
<td>250</td>
<td>195</td>
</tr>
<tr>
<td>35 mph</td>
<td>440</td>
<td>350</td>
</tr>
<tr>
<td>45 mph</td>
<td>635</td>
<td>570</td>
</tr>
<tr>
<td>55 mph</td>
<td>845</td>
<td>875</td>
</tr>
</tbody>
</table>

For Buses And Combination Trucks Exiting from a Driveway onto Two-Lane Roads

<table>
<thead>
<tr>
<th>Posted Speed</th>
<th>Safe Sight Distance – Left*</th>
<th>Safe Sight Distance – Right*</th>
</tr>
</thead>
<tbody>
<tr>
<td>25 mph</td>
<td>400</td>
<td>300</td>
</tr>
<tr>
<td>35 mph</td>
<td>675</td>
<td>625</td>
</tr>
<tr>
<td>45 mph</td>
<td>1,225</td>
<td>1,225</td>
</tr>
<tr>
<td>55 mph</td>
<td>2,050</td>
<td>2,050</td>
</tr>
</tbody>
</table>

* Measured from a vehicle setback 10 feet from the pavement edge.

For Passenger Cars and Single Unit Trucks Exiting from a Driveway Onto Four and Six-Lane Roads

<table>
<thead>
<tr>
<th>Posted Speed</th>
<th>Safe Sight Distance – Left*</th>
<th>Safe Sight Distance – Right*</th>
</tr>
</thead>
<tbody>
<tr>
<td>25 mph</td>
<td>175</td>
<td>195</td>
</tr>
<tr>
<td>35 mph</td>
<td>300</td>
<td>350</td>
</tr>
<tr>
<td>45 mph</td>
<td>500</td>
<td>570</td>
</tr>
<tr>
<td>55 mph</td>
<td>785</td>
<td>875</td>
</tr>
</tbody>
</table>
Chapter 3
Design Elements

VEHICULAR CIRCULATION

For Buses and Combination Trucks Exiting from a Driveway onto Four and Six-Lane Roads

<table>
<thead>
<tr>
<th>Posted Speed</th>
<th>Safe Sight Distance – Left*</th>
<th>Safe Sight Distance – Right*</th>
</tr>
</thead>
<tbody>
<tr>
<td>25 mph</td>
<td>300</td>
<td>300</td>
</tr>
<tr>
<td>35 mph</td>
<td>625</td>
<td>625</td>
</tr>
<tr>
<td>45 mph</td>
<td>1,225</td>
<td>1,225</td>
</tr>
<tr>
<td>55 mph</td>
<td>2,050</td>
<td>2,050</td>
</tr>
</tbody>
</table>

** Measured from a vehicle setback 10 feet from the pavement edge to a vehicle approaching in the outside lane.
*** Measured from a vehicle setback 10 feet from the pavement edge to a vehicle approaching in the median lane.

For Passenger Cars and Single Unit Trucks Entering Driveways by Left Turns

<table>
<thead>
<tr>
<th>Posted Speed</th>
<th>Safe Sight Distance****</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Two-Lane</td>
</tr>
<tr>
<td>25 mph</td>
<td>190</td>
</tr>
<tr>
<td>35 mph</td>
<td>300</td>
</tr>
<tr>
<td>45 mph</td>
<td>445</td>
</tr>
<tr>
<td>55 mph</td>
<td>610</td>
</tr>
</tbody>
</table>

**** Measured from the point where a left-turning vehicle stops to a vehicle in the outside lane.

For Buses and Combination Trucks Entering Driveways by Left Turns

<table>
<thead>
<tr>
<th>Posted Speed</th>
<th>Safe Sight Distance****</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Two-Lane</td>
</tr>
<tr>
<td>25 mph</td>
<td>330</td>
</tr>
<tr>
<td>35 mph</td>
<td>485</td>
</tr>
<tr>
<td>45 mph</td>
<td>690</td>
</tr>
<tr>
<td>55 mph</td>
<td>905</td>
</tr>
</tbody>
</table>

**** Measured from the point where a left-turning vehicle stops to a vehicle in the outside lane.

Note:
The previous tables should be used only as a general guide. At the time of this document’s publication, PennDOT is in process of updating their Publication 282: Highway Occupancy Permit (HOP) Guidelines. DRAFT information for the Pub. 282 revision refers to Chapter 2 of Design Manual 2 (Pub 13M) and the AASHTO Green Book regarding sight distance values.

Comments
It is important to have adequate sight distance for all driveways to provide the best possible visibility thereby reducing points of conflict. Ordinances should allow municipalities to control vertical elements that obstruct
essential sight distances. High-volume driveways at the crest of hills may require a left-turn lane to reduce accident potential and provide adequate sight distances.

Recommendations
- Follow the recommendations of the updated Publication 282: Highway Occupancy Permit (HOP) Guidelines regarding sight distance values.
- See also the PennDOT Driveway Sight Distance Measurements Form M-950S http://www.dot.state.pa.us/public/PubsForms/Forms/M-950S.pdf

Driveway Sight Distance

Spacing and Number of Driveways

Standards

PennDOT

Number of driveways. The number and location of entrances which may be granted will be based on usage, interior and exterior traffic patterns, and the current design policies of PennDOT.

1. Normally, only one driveway will be permitted for a residential property and not more than two driveways will be permitted for a non-residential property.
2. If the property frontage exceeds 600 feet, the permit may authorize an additional driveway.
3. Regardless of frontage, a development may be restricted to a single entrance/exit driveway, served by an internal collector road separated from the traveled way.

Multiple driveways serving the same property must be separated by a minimum distance of 15 feet measured along the right-of-way line and 20 feet measured along the shoulder, ditch line, or curb. When the distance between the multiple driveways is 50 feet or less measured along
Chapter 3
Design Elements

VEHICULAR CIRCULATION

DRIVEWAY SPACING AND NUMBER
(aka distance between driveways) - The amount and location of driveways in relation to other driveways. The distance is measured between curbline openings.

the shoulder or ditch line, the area between shall be clearly defined by permanent curbing. This curb shall be placed in line with the existing curb or two feet back of the shoulder or ditch line on uncurbed highways. It shall be extended around the driveway radii to the right-of-way line.

PennDOT does not provide specific standards for spacing between driveways on individual properties.

Comments

The greater the number of driveways that are intersecting the street, the greater the number of potential conflict points and accidents. Additional driveways also reduce street capacity and street speed.

Access management is particularly important on corridors served by transit bus routes. In the case of driveways adjacent to intersections, they should be placed, when possible, in such a way that does not unduly restrict the transit agency from placing a bus stop adjacent to the sidewalks and crosswalks that serve that intersection.

Many existing sites, particularly serving automobile-oriented uses, preclude bus stop placements because of uncontrolled or limited control access points or driveways placed in close proximity to the intersection. This may force the transit provider to create a mid-block stop, whereby the passengers either cross the arterial or collector in an uncontrolled location or they have to cross the aforementioned access points to reach a controlled crossing point.

Effective methods of eliminating excessive driveways are to integrate access points and eliminate unnecessary access points. These methods are especially useful when building on environmentally constrained lands.

Recommendations

• Recommendations for the number of driveways are found in the Pennsylvania Code, Title 67, Transportation, Chapter 441, Access To and Occupancy of Highways by Driveways and Local Roads.

• On arterial and collector roads align opposing driveways to avoid jogs or off-sets.

Shared Access
Intersections

‘Intersections’ pertains to multiple design elements concerning intersections, including: alignment, channelization, grades, offset, radii, sight distance, signalization, spacing, and traffic control devices:

Alignment

Standards
AASHTO & PennDOT: As close to 90º as possible, but a minimum of 60º.

Comments
Since intersections represent points of conflict and are potentially hazardous, the alignment should provide adequate sight distance and allow users to maneuver safely with minimum interference. Roads intersecting at acute angles require extensive turning roadway areas and tend to limit visibility, particularly for truck drivers. When a truck turns on an obtuse angle, the driver has blind areas on the right of the vehicle. Acute-angle intersections increase the exposure time of the vehicles crossing the main traffic flow and may increase the accident potential.

According to PennDOT, realigning roadways that intersect at acute angles may prove beneficial. But angles above 60º do not warrant realignment closer to 90º since it produces a small increase in visibility.

Recommendation
• As close to 90º as possible, but a minimum of 60º.

Intersection alignment

Align roads to intersect at a 90 degree angle for a minimum of 50 feet.
Channelization

Standards
Manual on Uniform Traffic Control Devices (MUTCD)

Comments
Channelized islands should be placed so that the proper course of travel is immediately obvious, easy to follow, and of unquestionable continuity. Properly placed islands are advantageous where through and turning movements are heavy. The use of curbed islands generally should be reserved for multi-lane highways or streets and for more important intersections on two-lane highways. In or near urban areas where speeds are low and drivers are accustomed to confined facilities, channelization can be expected to work well.

Painted or striped channelization can be made to increase efficiency and safety and has the advantage of easy modification when warranted by driver behavior (ITE). This type of channelization may be used initially to establish the best layout arrangement before the permanent construction of islands, if necessary.

Islands serve several purposes including:

- separation of conflicts;
- control of angle of conflict;
- reduction in excessive pavement areas;
- regulation of traffic and indication of proper use of intersection;
- arrangements to favor a predominant turning movement;
- protection of pedestrians;
- protection and storage of turning and crossing vehicles; and,
- location of traffic control devices.

Recommendation
Grades

Standards
AASHTO: Grades in excess of 3 percent should be avoided. Where conditions make designs unduly expensive, grades should not exceed 6 percent. Storage areas should be flat or 0.5 percent minimum to 2 percent maximum.

Comments
Intersecting roads should permit users to discern and easily perform the maneuvers necessary to pass through the intersection safely and with minimum interference from other users. A level, storage area prior to the intersection improves the operational capabilities and safety characteristics of an intersection.

Recommendation
- Recommend use of AASHTO standards.

Intersection grades

INTERSECTION
GRADES
(Vertical alignment or profile) - The rise and fall of a given roadway at an intersection.
Chapter 3
Design Elements

VEHICULAR CIRCULATION

INTERSECTION RADII
(Turning radius, turning path or curb radii) - A measure of the sharpness of the corner formed by two intersecting streets, independent of the angle at which the streets intersect.

Radii

Standards

AASHTO:

<table>
<thead>
<tr>
<th></th>
<th>Rural</th>
<th>Urban</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rural</td>
<td>50 Foot minimum</td>
<td>15 Foot minimum, 25 foot desirable on local roads with pedestrians</td>
</tr>
<tr>
<td></td>
<td>35 Foot minimum on local roads with low truck volumes</td>
<td>30 Foot minimum for industrial areas and areas with higher truck volumes</td>
</tr>
</tbody>
</table>

PennDOT: Recommended use of AASHTO

<table>
<thead>
<tr>
<th></th>
<th>Rural</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rural</td>
<td>25 Foot minimum for minor cross streets</td>
</tr>
<tr>
<td></td>
<td>30 Foot minimum for major cross streets</td>
</tr>
<tr>
<td></td>
<td>40 Foot minimum with high truck volumes</td>
</tr>
</tbody>
</table>

Comments

Intersections should be designed to accommodate the expected amount and type of traffic and allow for safe turning speeds. Intersections designed with a corner radius to accommodate the largest vehicles anticipated, eliminate the problem of increased traffic conflict and vehicles driving over the curb.

Turning radii should reflect the presence of transit bus routes. It is recommended that minor allowances be made to the standard turning templates to address varying driving conditions and situations. Stop bars at controlled intersections should be placed so that the transit vehicle avoids crossing the center line of the roadway to make turns. The placement of traffic signal loop detectors may also be affected by the need to address buses making turns.

There must be a balance in determining curb radii for collector and local streets. Caution should be taken not to over or under design the radius. As the curb radius increases, the paving cost and intersection area required for pedestrian movement also increase, dangerous "rolling stops" become more frequent, and higher turning speeds are encouraged. (ULI)

Recommendations

- Recommend use of PennDOT standards for state highways.
- Recommend 5-15 foot minimum on local roads.
Sight Distance

Standards
AASHTO:

Minimum Corner Intersection Sight Distance (Feet)

<table>
<thead>
<tr>
<th>Urban</th>
<th>200 Foot minimum, 300 foot desirable</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Design Speed (mph)</td>
<td>2-Lane Roadway*</td>
</tr>
<tr>
<td></td>
<td>Local/Collector</td>
</tr>
<tr>
<td>Rural and Suburban</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>20</td>
</tr>
</tbody>
</table>

* The number of lanes and highway functional classification refers to the highway being intersected.
** At 60 MPH, stopping sight distance governs.

The primary purpose of establishing a clear sight triangle is where no traffic control device exists or where a yield sign is used. The practice of providing a clear area free of obstructions is still a good practice but it should be used in conjunction with adequate intersection sight distances.

Comments
Each intersection contains several potential vehicle conflicts, the possibility of these conflicts actually occurring can be greatly reduced through the provision of proper sight distances and appropriate traffic controls.

The operator of a vehicle approaching an intersection at-grade should have an unobstructed view of the entire intersection and sufficient length of highway to permit control of the vehicle to avoid collisions. The sight distance considered safe under various assumptions of physical conditions and driver behavior is directly related to vehicle speeds and to the resultant distances traversed during perception and reaction time and braking.

The object being viewed should be measured at a height of 3.5 feet. The reason for this is that the first part of an approaching vehicle that is observed is approximately 3.5 feet high.
Chapter 3
Design Elements

Recommendations

- Follow the recommendations of PennDOT’s Publication 70M, *Guidelines for the Design of Local Roads and Streets* for intersection sight distances. Use rural and suburban classifications for townships and use the urban classification for boroughs and cities.

- Provide a clear area or, clear sight triangle, free of obstructions in conjunction with adequate intersection sight distances.

Intersection sight distance

Intersection sight triangle

Clear sight triangle is not synonymous with intersection sight distance. There is a distinct difference between the two as illustrated above. Most municipalities use a clear sight triangle of 75 feet. A clear sight triangle improves the sight distance for the approach to the intersection but the more critical value is the sight distance at the stopped position.
Signalization

Standards
PennDOT: Recommended use of the MUTCD; the Pennsylvania Code, Title 67, Chapter 212, Official Traffic Control Devices for signal warrants; PennDOT Publication 149 Traffic Signal Design Handbook; PennDOT Publication 408 Specifications; and the PennDOT Publication 148 Traffic Standard Drawings, TC-8800 Series.

The system for establishing the need for signal installation is known as "signal warrants". There are twelve warrants for traffic signals. Presented as an example, Warrant 1, Minimum Vehicular Volume, is intended for application where the volume of intersecting traffic is the principal reason for consideration of signal installation. These warrants should be thought of as a guide rather than absolute criteria.

Minimum Vehicular Volumes for Signal Warrant One

<table>
<thead>
<tr>
<th>Number of lanes for moving traffic on each approach</th>
<th>Vehicles per hour on major street (both approaches)</th>
<th>Vehicles per hour on higher volume minor street approach (one direction only)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Major St.</td>
<td>Minor St.</td>
<td>500</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2 or more</td>
<td>1</td>
<td>600</td>
</tr>
<tr>
<td>2 or more</td>
<td>2 or more</td>
<td>600</td>
</tr>
<tr>
<td>2 or more</td>
<td>2 or more</td>
<td>500</td>
</tr>
</tbody>
</table>

Comments
Contrary to common belief, traffic signals do not always increase safety and reduce delay. Experience has indicated that, although the installation of signals may result in a decrease in the number and severity of right-angle collisions, signals will, in many instances, result in an increase in rear-end collisions. Further, the installation of signals may not only increase overall delay but may also reduce intersection capacity.

Recommendations
- Follow the recommendations of the: MUTCD; the Pennsylvania Code, Title 67, Chapter 212, Official Traffic Control Devices for signal warrants; PennDOT Publication 149 Traffic Signal Design Handbook; PennDOT Publication 408 Specifications; and the PennDOT Publication 148 Traffic Standard Drawings, TC-8800 Series.

INTERSECTION SIGNALIZATION
(Traffic control signals)
Any power-operated traffic control device, other than a barricade warning light or steady burning electric lamp, by which traffic is warned or directed to take some specific action.
Spacing

Standards

AASHTO *A Policy on Geometric Design of Highways and Streets*

Comments

The functional deterioration of arterials and collectors is a result of the proliferation of inadequate access management that generates operational and accident problems. The greater the number of access points per mile the greater the accident rate. When adjacent intersections and driveways are situated close together, the overlapping maneuver areas conflict and reduce total capacity. (ITE)

The location and spacing of intersections and driveways should be based on the following factors:

- functional classification;
- design speed and grade of the highway;
- signal spacing;
- number, volume and location of existing access points;
- lot width; and,
- sight considerations.

Recommendations

Based upon a review of the recommendations of various sources, the following charts are suggested as a reference in determining intersection spacing. This process is complex and may be interpreted as an oversimplification and should therefore only be used as a guide. The values provided in these charts are interpolated based on the fundamental points of:

1. signal spacing (1-4 per mile);
2. corner clearance;
3. intersection off-sets;
4. driveway spacing; and,
5. number of driveways per half mile.

The charts only identify suburban and rural roads because most urban roads are already developed. To use the chart, establish whether the area is suburban or rural, then determine the function of the primary road. The next step is to determine the function of the two intersecting roadways. For example: if the primary road is a suburban arterial and the two intersecting roadways are a collector and a local road the suggested distance between these two intersections is 450 feet from centerline to centerline.
Suburban Arterial (feet)

<table>
<thead>
<tr>
<th></th>
<th>Arterial</th>
<th>Collector</th>
<th>Local</th>
<th>Driveway</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arterial</td>
<td>2,640</td>
<td>2,000</td>
<td>500</td>
<td>230</td>
</tr>
<tr>
<td>Collector</td>
<td>2,000</td>
<td>1,500</td>
<td>450</td>
<td>175</td>
</tr>
<tr>
<td>Local</td>
<td>500</td>
<td>450</td>
<td>400</td>
<td>100</td>
</tr>
<tr>
<td>Driveway</td>
<td>230</td>
<td>175</td>
<td>100</td>
<td>A</td>
</tr>
</tbody>
</table>

Rural Arterial (feet)

<table>
<thead>
<tr>
<th></th>
<th>Arterial</th>
<th>Collector</th>
<th>Local</th>
<th>Driveway</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arterial</td>
<td>5,280</td>
<td>2,640</td>
<td>500</td>
<td>230</td>
</tr>
<tr>
<td>Collector</td>
<td>2,640</td>
<td>2,000</td>
<td>450</td>
<td>175</td>
</tr>
<tr>
<td>Local</td>
<td>500</td>
<td>450</td>
<td>400</td>
<td>100</td>
</tr>
<tr>
<td>Driveway</td>
<td>230</td>
<td>175</td>
<td>100</td>
<td>B</td>
</tr>
</tbody>
</table>

- A – For access management purposes, permit no more than 10 access points per half mile.
- B – For access management purposes, permit no more than 8 access points per half mile.

Suburban Collector (feet)

<table>
<thead>
<tr>
<th></th>
<th>Arterial</th>
<th>Collector</th>
<th>Local</th>
<th>Driveway</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arterial</td>
<td>2,640</td>
<td>1,500</td>
<td>500</td>
<td>115</td>
</tr>
<tr>
<td>Collector</td>
<td>1,500</td>
<td>1,000</td>
<td>450</td>
<td>85</td>
</tr>
<tr>
<td>Local</td>
<td>500</td>
<td>450</td>
<td>400</td>
<td>50</td>
</tr>
<tr>
<td>Driveway</td>
<td>115</td>
<td>85</td>
<td>50</td>
<td>C</td>
</tr>
</tbody>
</table>

Rural Collector (feet)

<table>
<thead>
<tr>
<th></th>
<th>Arterial</th>
<th>Collector</th>
<th>Local</th>
<th>Driveway</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arterial</td>
<td>2,640</td>
<td>2,000</td>
<td>500</td>
<td>115</td>
</tr>
<tr>
<td>Collector</td>
<td>2,000</td>
<td>1,500</td>
<td>450</td>
<td>85</td>
</tr>
<tr>
<td>Local</td>
<td>500</td>
<td>450</td>
<td>400</td>
<td>50</td>
</tr>
<tr>
<td>Driveway</td>
<td>115</td>
<td>85</td>
<td>50</td>
<td>D</td>
</tr>
</tbody>
</table>

- C – For access management purposes, permit no more than 12 access points per half mile.
- D – For access management purposes, permit no more than 14 access points per half mile.
Traffic Control Devices

Standards
PennDOT: Recommended use of the MUTCD; the Pennsylvania Code, Title 67, Chapter 212, Official Traffic Control Devices for signal warrants; PennDOT Publication 149 Traffic Signal Design Handbook; PennDOT Publication 408 Specifications; and the PennDOT Publication 148 Traffic Standard Drawings, TC-8800 Series.

Comments
Signing and marking are directly related to the design of the highway or street and are features of traffic control and operation that the designer must consider in the geometric layout of a facility. The signing and marking should be designed concurrently with the geometrics since future operational problems can be reduced significantly if both are treated as an integral part of design.

Although safety and efficiency of operation depend to a considerable degree on the geometric design of the facility, the physical layout must also be supplemented by effective signing as a means of informing, warning and controlling drivers. Signing plans coordinated with horizontal and vertical alignment, sight distance obstructions, operation speeds and maneuvers and other applicable items should be worked out before design completion. (PennDOT)
Recommendations

- Follow the recommendations of the: MUTCD; the Pennsylvania Code, Title 67, Chapter 212, Official Traffic Control Devices for signal warrants; PennDOT Publication 149 Traffic Signal Design Handbook; PennDOT Publication 408 Specifications; and the PennDOT Publication 148 Traffic Standard Drawings, TC-8800 Series.

Traffic signals.

Traffic signs.
Lane Design

Acceleration/Deceleration Lane with Taper Only

Acceleration Lane

Standard

PennDOT: The combination of highway speeds, volumes, location and arrangement of driveways and intersections may require the installation of an acceleration lane to serve a proposed low, medium or high-volume driveway. A lane width of 14 feet is recommended where curbs exist and 12 feet where no curbs are in place.

Acceleration lanes are not recommended at driveways. Roadway speed and a higher number of turning movements and the primary factors to consider for acceleration lanes. The length of an acceleration lane is determined on an individual site basis and according to the amount of existing lot frontage. The storage length of an acceleration lane is typically between 150 and 250 feet. The length of the taper is usually between 75 and 150 feet. At un-signalized intersections with deceleration lanes, an acceleration taper is sometimes sufficient to allow vehicles to adjust their path of travel.

Comments

A speed-change lane should be sufficiently long and wide enough to enable a driver to maneuver a vehicle into it properly, and once in it, to make the necessary increase in speed.

Warrants for the use of speed-change lanes cannot be stated definitively. Many factors must be considered, such as speeds, grades, traffic volumes, capacity, type of highway, vehicle type, the arrangement and frequency...
of intersections, and accident experience. Observations and considerable experience with speed-change lanes have led to the following conclusions:

1. Speed-change lanes are warranted on high-speed and on high-volume highways where a change in speed is necessary for vehicles entering through-traffic lanes.

2. All drivers do not use speed-change lanes in the same manner; some use little of the available facility. As a whole, however, these lanes are used sufficiently to improve the overall safety and operation of the highway.

3. Use of speed-change lanes vary according to traffic volumes, the majority of drivers use them when traffic volumes are high.

Acceleration lanes have limited applicability, are improperly used and often become a place where cinders collect.

Recommendation

- Provide additional right-of-way adjacent to acceleration or deceleration lanes to provide for future road widenings. The extended right-of-way needs to go a minimum of 5 feet beyond the existing width of the acceleration or deceleration lane.

Deceleration Lane

<table>
<thead>
<tr>
<th>Design Speed</th>
<th>Distance (Feet)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 mph</td>
<td>235</td>
</tr>
<tr>
<td>40 mph</td>
<td>315</td>
</tr>
<tr>
<td>50 mph</td>
<td>435</td>
</tr>
</tbody>
</table>

* Minimum distance on grade less than 2 percent

Storage Length

Un-signalized Intersection/Driveways: Storage length is based on the number of turning vehicles likely to arrive in an average 2-minute period during the peak hour. Minimum space for at least one car and one truck with over 10 percent truck traffic should be provided, otherwise, space for two cars is sufficient.

Signalized Intersections/Driveways: The required storage length depends on the signal cycle length, the signal phasing and the rate of vehicular arrivals. It should probably be one and one-half to two times the average number of vehicles that would store per cycle, which is predicated on the design volume.
Comments

A speed-change lane should be sufficiently long and wide enough to enable a driver to maneuver a vehicle into it properly, and once in it, to make the necessary reduction in speed.

The issue of proximity to existing and prospective bus stop locations should be evaluated in the presence, design and placement of acceleration and deceleration lanes. On a case-by-case basis, PennDOT’s Engineering District 6-0 has discouraged the use of deceleration lanes for bus stops where the volume of right turns is significant and there is a continuous or periodic free-flow condition. This is because of the potential of merge and weave-related crashes that could occur as curbed buses are leaving the bus stop and returning to the through-traffic flow, using the deceleration lane to accelerate.

The increased use of deceleration lanes has reduced SEPTA's ability to identify safe locations for bus stops that are within reasonable distance of trip generators. This is particularly true where multiple access points are proposed and/or where minimal sidewalk connections exist or are being proposed. As a general rule, development proposals and other projects that touch existing bus stops or that would support the installation of a new stop should be vetted with SEPTA early in the process, particularly if the new stop location is proposed to be sited in an acceleration or deceleration lane.

Many factors must be considered, such as speeds, traffic volumes, capacity, type of highway, vehicle type, the arrangement and frequency of intersections, and accident experience. Observations and considerable experience with speed change lanes have led to the following conclusions:

1. Speed-change lanes are warranted on high-speed and on high-volume highways where a change in speed is necessary for vehicles entering or leaving the through-traffic lanes.
2. All drivers do not use speed-change lanes in the same manner; some use little of the available facility. As a whole, however, these lanes are used sufficiently to improve the overall safety and operation of the highway.
3. Use of speed-change lanes varies according to traffic volumes, the majority of drivers use them when traffic volumes are high.
4. Long tapers enhance the function of speed change-lanes.
5. Deceleration lanes on the approaches to at-grade intersections that also function as storage lanes for turning traffic are particularly advantageous because they reduce hazards and increase capacity.
Chapter 3
Design Elements

VEHICULAR CIRCULATION

Recommendations

• Provide a deceleration lane into major subdivisions and commercial or office developments especially where no traffic control device exists and where conditions warrant.

• Provide a deceleration lane on principal arterial roads where only one through lane exists and where conditions warrant.

• PennDOT recommends a 14-foot wide deceleration lane for curbed areas.

• Provide additional right-of-way around acceleration or deceleration lanes to provide for future road widenings. The extended right-of-way needs to go a minimum of 5 feet beyond the existing width of the acceleration or deceleration lane.

‘Lane Design’ pertains to multiple design factors of travel lanes in the roadway including: lane width, left turn lanes, number of travel lanes, and shoulders.

Lane Width: Local & Internal Roadways

Lane widths should not be determined by only one factor, but according to the following: intended function of the road, expected traffic volume, intensity of adjacent land use, lot size, building setbacks, length of driveway, number of garages, parking needs, curbing, mailbox location, and overall neighborhood design.

While access is the primary function of all local roads, some local roads provide limited mobility functions. Local roads should have a sub-classification because of varied functions. Please refer to the following chart and Street Width exhibits (Sections A, B, C, etc.) found on the following pages.

Local & Internal Roadways

<table>
<thead>
<tr>
<th>Type/Section</th>
<th>Description</th>
</tr>
</thead>
</table>
| Primary Distributor (Section A) | • Generally moves traffic to the arterial or collector networks from neighborhoods or subdivisions.
• May extend through a municipality and may serve an inter-municipal function, but it should not provide a regional function.
• Parking should be prohibited, except in urban or village areas, and the width of the road should accommodate speeds in the 25-45 MPH range, with daily traffic volumes between 750-2,500 vehicles.
• Parcel access should not be prohibited, but should be more limited than a secondary distributor or local access road. |
Chapter 3
Design Elements

VEHICULAR CIRCULATION

Local & Internal Roadways (continued)

<table>
<thead>
<tr>
<th>Type/Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Secondary Distributor (Sections B & C)</td>
<td>• Extends through a neighborhood or subdivision, moving traffic to a primary distributor or directly to the collector network. Secondary distributors basically
• On-street parking is not prohibited, but should be limited.
• The design of the road should accommodate travel speeds in the 15-25 MPH range, with daily traffic volumes between 200-1,500 vehicles.</td>
</tr>
<tr>
<td>Local Access Street (Sections D, E, F)</td>
<td>• A local access street is strictly intended for access to adjacent properties.
• Traffic speeds should be less than 15 MPH and daily traffic volumes should be less than 500 vehicles.
• Other design features include: short length of road to discourage through traffic, smaller curb radii, driveway and alignment radii to preclude higher speeds.
• In a neighborhood of small lots with limited off-street parking, the cartway should be wider to accommodate on-street parking.</td>
</tr>
<tr>
<td>Local Access Street (Section G)</td>
<td>• A narrow cartway should be provided in a neighborhood of large lots (cross-section G) which have off-street parking.</td>
</tr>
<tr>
<td>Local Access Street (Section H)</td>
<td>• Local roads serving commercial, office and industrial developments.
• The width and number of travel lanes on local roads in a large non-residential development depends on the anticipated traffic volumes.</td>
</tr>
</tbody>
</table>

The function of local roads adjacent to or within a new development needs to be carefully considered. A road that is intended to serve as a local access street should be designed accordingly. If a road is intended to eventually connect into another subdivision or neighborhood, then it should be designed as a secondary distributor. Over-design of a local road can lead to wasted expense and higher housing costs and could impact the safety and residential quality of a neighborhood. Under-design can lead to safety problems and expensive reconstruction.
Chapter 3
Design Elements

VEHICULAR CIRCULATION

Street width
VEHICULAR CIRCULATION

Street width (continued)

A
10’ – 12’
Primary Distributor

B
10’ – 11’
Secondary Distributor

C
11’ – 12’
Secondary Distributor

D
9’ – 11’
Local Access Street

E
9’ – 11’
Local Access Street

F
9’ – 11’
Local Access Street

G
8’ – 9’
Local Access Street

H
12’ – 14’
Local Access Street

T=Travel Lane
P=Parking Lane
All measurements in feet
The width of a residential street should be based on its intended use, not on a “one-size-fits-all” standard. The ordinance requirements should link the design of the street to the anticipated number of trips on the street and whether or not on-street parking will be provided. Where smaller lots are proposed, on-street parking should be permitted on at least one side of the street. Benefits of appropriate street design include reduced impervious surface, lower maintenance costs, reduced width of the streetscape, and a reduction in speeding that is encouraged by wide roadways.

Recommendations

Primary Distributor Streets – The primary distributor street is the highest order of street that can be classified as residential and will carry the largest volume of traffic at higher speeds. This level of street is unsuitable for providing direct access to homes and such access should be avoided.

Primary distributor streets shall be required when the ADT anticipated on the street exceeds the limits for residential secondary distributor streets. If the anticipated ADT exceeds three thousand (3,000) the street shall be classified as a higher order than a primary distributor and the township, upon recommendation of their Engineer, shall determine the required design standards. On-street parking shall be prohibited on primary distributor streets. Primary distributor streets should be designed to have no residential lots fronting on them. However, in no case shall the percent of total length of the primary distributor street with residential frontage on and taking access from the street exceed the following:

<table>
<thead>
<tr>
<th>Average Daily Trips (ADT) Level</th>
<th>Allowable Access Frontage Along Primary Distributor</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,000 to 1,199</td>
<td>20%</td>
</tr>
<tr>
<td>1,200 to 1,599</td>
<td>10%</td>
</tr>
<tr>
<td>1,600 to 1,999</td>
<td>5%</td>
</tr>
<tr>
<td>2,000 +</td>
<td>0%</td>
</tr>
</tbody>
</table>

Travel lane widths shall be based upon anticipated average daily trips as follows. The wider of the two lane widths shall be used when raised curbs are proposed.

<table>
<thead>
<tr>
<th>Average Daily Trips (ADT)</th>
<th>Travel Lane Width</th>
<th>Total Cartway Width</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,000 ADT or less</td>
<td>10 to 11 feet</td>
<td>20 to 22 feet</td>
</tr>
<tr>
<td>More than 2,000 ADT</td>
<td>11 to 12 feet</td>
<td>22 to 24 feet</td>
</tr>
</tbody>
</table>
Secondary Distributor Streets – The secondary distributor street is the middle order street in the residential street hierarchy. It carries more traffic than the local access street but can provide an acceptable if not optimum environment for a residential neighborhood. Each secondary distributor street shall be designed so that no section of it will convey a traffic volume greater than five hundred (500) ADT.

Design parameters for secondary distributor streets

<table>
<thead>
<tr>
<th>Development Type Fronting on Street</th>
<th>Design Factors</th>
<th>Street Standards</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Parking</td>
<td>Travel Lane Width</td>
</tr>
<tr>
<td></td>
<td>On-Lot</td>
<td>On-Street/ Spillover</td>
</tr>
<tr>
<td>Permanent open space, no residential frontage</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Lots 2 acres(^2) or more, deed restricted against further subdivision</td>
<td>On-Lot</td>
<td>None</td>
</tr>
<tr>
<td>Lot widths 100 feet or greater</td>
<td>On-Lot</td>
<td>None</td>
</tr>
<tr>
<td>Lot widths 40 to 100 feet</td>
<td>On-Lot</td>
<td>One Side</td>
</tr>
<tr>
<td>Lot widths less than 40 feet w/ rear alley access</td>
<td>On-Lot from alley</td>
<td>Two Sides(^3)</td>
</tr>
<tr>
<td>Lot widths less than 40 feet or no separate housing lots (apartments)</td>
<td>On-lot or off-street parking lot provided</td>
<td>Off-street parking lot provided</td>
</tr>
</tbody>
</table>

\(^1\) If no curbing or flush curbing is being used, the minimum width should be used. If raised curbing is proposed, at least one additional foot of width above the minimum shown should be provided.
\(^2\) Performance Streets uses a minimum lot size of five acres.
\(^3\) A single parking lane may be provided if houses front on only one side of the street. In such cases, the total cartway width may be reduced by eight (8) feet to a width of 28 to 32 feet.
Local Access Streets — The local access street is the lowest order street in the residential street hierarchy. It is intended to carry the least amount of traffic at the lowest speed and will provide the safest and most desirable environment for a residential neighborhood. Developments should be designed so the maximum number of homes possible front on this class of street. A local access street shall be designed to carry no more traffic than is generated on the street itself. Each local access street shall be designed so that no section of the street carries an Average Daily Traffic (ADT) volume of greater than two hundred (200).

Design parameters for local access streets

<table>
<thead>
<tr>
<th>Development Type Fronting on Street</th>
<th>Design Factors</th>
<th>Street Standards</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Parking</td>
<td>Total Cartway Width</td>
</tr>
<tr>
<td></td>
<td>On-Lot</td>
<td>On-Street/ Spillover</td>
</tr>
<tr>
<td>Permanent open space, no residential frontage</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Lots 2 acres or more, deed restricted against further subdivision</td>
<td>On-Lot</td>
<td>None</td>
</tr>
<tr>
<td>Lot widths 100 feet or greater</td>
<td>On-Lot</td>
<td>None</td>
</tr>
<tr>
<td>Lot widths 40 to 100 feet</td>
<td>On-Lot</td>
<td>One Side</td>
</tr>
<tr>
<td>Lot widths less than 40 feet w/ rear alley access</td>
<td>On-Lot from alley</td>
<td>Two Sides</td>
</tr>
<tr>
<td>Lot widths less than 40 feet or no separate housing lots (apartments)</td>
<td>Off-street parking lot provided</td>
<td>Off-street parking lot provided</td>
</tr>
</tbody>
</table>

1. If no curbing or flush curbing is being used, the minimum width should be used. If raised curbing is proposed, at least one additional foot of width above the minimum shown should be provided.

2. Performance Streets uses a minimum lot size of five acres.

3. Alternatively, for very low volume streets, two parking lanes and one travel lane can be provided (see “Local Access Street” F in Figure 3-3).

4. A single parking lane may be provided if houses front on only one side of the street. In such cases, the total cartway width may be reduced by eight (8) feet to a width of 26 to 30 feet.
Lane Width: Public Roadways

According to AASHTO, "No feature of a highway has a greater influence on the safety and comfort of driving than the width and condition of the surface.” Lane widths of 10-13 feet are most common in Chester County, with 12-foot lanes predominant on most high-type highways. The County has been working with PennDOT to reduce lanes to 11 feet to improve shoulders for biking. Other research studies by the Federal Highway Administration have generally shown that the accident rates decrease with an increase in the width of the traffic lane.

AASHTO states that a 24-foot cartway is required to permit desired clearance between commercial vehicles. An effective width of 20 feet is considered adequate only for low volume roads where meetings and passings are infrequent and the proportion of trucks is low.

To qualify for financing through PennDOT’s Liquid Fuels Tax Fund, roads must be at least 16 feet wide.

Most full-sized transit vehicles are 102 inches (8.5 feet) in width. When adding 1 foot on each side for protruding mirrors, this means that buses need 10.5 feet of clearance for operations. This means that arterials and collectors should be at least that wide if they currently or prospectively would carry transit vehicles in the course of their travels. This also includes any possible routes that would be used in the event of a detour caused either by a recurring or incident-related blockage.

PA 3 in West Goshen Township.
Recommendations

Cartway widths should be flexible and site specific according to lot sizes, the desire or need for on-street parking, the functional classification of the road and overall design of the subdivision.

<table>
<thead>
<tr>
<th>Roadway Design</th>
<th>Expressway</th>
<th>Major Arterial</th>
<th>Minor Arterial</th>
<th>Major Collector</th>
<th>Minor Collector</th>
<th>Local Road</th>
</tr>
</thead>
<tbody>
<tr>
<td>Travel Lane</td>
<td>12-14'</td>
<td>10' to 12' depending on number of lanes, bike lanes, shoulders, etc.</td>
<td>9'-11'</td>
<td>9'-11'</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shoulder</td>
<td>8'-10'</td>
<td>4-6' (if no bike lane or parking)</td>
<td>8'-10' in suburban commercial contexts</td>
<td>4-6' (if no bike lane or parking)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parking lane (7-8' parallel)</td>
<td>Prohibited</td>
<td>Recommended in urban landscape; evaluate feasibility in suburban (7-8' parallel)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Roadway Design</th>
<th>All</th>
<th>Major Arterial</th>
<th>Minor Arterial</th>
<th>Major Collector</th>
<th>Minor Collector</th>
<th>Local Road</th>
</tr>
</thead>
<tbody>
<tr>
<td>Travel Lane</td>
<td>12-14'</td>
<td>11' to 12' depending on number of lanes, bike lanes, shoulders, etc.</td>
<td>10'-11'</td>
<td>9'-11'</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shoulder</td>
<td>8'-10'</td>
<td>8'-10'</td>
<td>8'-10'</td>
<td>4'-8'</td>
<td>4'-8'</td>
<td>2'-8'</td>
</tr>
<tr>
<td>Parking lane (7-8' parallel)</td>
<td>Prohibited</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>
Left-Turn Lanes

Standards
PennDOT: Please refer to the section 11.16 of the PennDOT, Traffic Engineering Manual, Publication 46 http://www.dot.state.pa.us/public/PubsForms/Publications/Pub%2046.pdf

Comments
For signalized intersections a Level of Service analysis will determine the need for a left-turn lane. The Federal Highway Administration found that channelization of intersections produces an average 32.4 percent reduction in all types of accidents. Accidents involving personal injuries decreased by over 50 percent.

Recommendations
Left-turn lanes should be provided at new and existing driveways and intersections that exhibit the following conditions:

1. Medium-volume (750+ADT) driveways and roads which intersect arterial and collector roads in rural areas;
2. High-volume (1500+ADT) driveways or roads that intersect arterials;
3. Driveways on the crest of a hill where sight distance is limited; and
4. Intersections where sight distance is limited due to a horizontal and/or vertical curve.

In addition to these four conditions, left-turn lanes should be provided where warrants are met based on the recommendations of the section 11.16 of the PennDOT, Traffic Engineering Manual, Publication 46 http://www.dot.state.pa.us/public/PubsForms/Publications/Pub%2046.pdf

Left turn lane
Chapter 3
Design Elements

VEHICULAR CIRCULATION

NUMBER OF TRAVEL LANES
The lanes required to move through traffic at desirable operating speeds, not including left and right turning lanes or parking lanes.

SHOULDER
The existing improved or graded portions of the road, contiguous to the traffic lanes.

Number of Travel Lanes
The number of lanes is determined by capacity analysis for selected levels of service. This determination is based on factors such as: traffic volumes; number of trucks, turning movements, grades, parking requirements, and signal timing, etc.

On residential streets, at least one moving lane must be provided even where parking occurs on both sides. The level of user inconvenience on low-density, residential streets with one moving lane is low in areas where single-family units prevail.

Recommendation
Recommend use of the Transportation Research Board’s, *Highway Capacity Manual* to determine the correct number of travel lanes for roads and intersections.

Shoulders
FHWA studies have generally shown that accident rates are reduced as shoulder width increases. Shoulders have many advantages such as:

- providing an emergency area, a maintenance and snow removal area and a space for bicycle and pedestrian use as well as overall structural support for the pavement;
- improving sight distances, capacity and maintaining uniform speeds, thereby increasing safety;
- providing an area to escape potential accidents or reduce their severity;
- giving the driver a sense of openness contributing to driving ease and freedom from strain; and,
- discharging stormwater from the pavement.

Recommendations
- Local access streets in low-density areas do not require a paved shoulder. A graded, stabilized grass area which provides groundwater recharge is sufficient on these roads.

Public Roadway Shoulder Widths

<table>
<thead>
<tr>
<th></th>
<th>Growth Area</th>
<th>Rural Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expressway</td>
<td>8-10'</td>
<td>8-10'</td>
</tr>
<tr>
<td>Major Arterial</td>
<td>4-6' if no parking or bike lane; 8-10' in suburban commercial contexts</td>
<td>8-10'</td>
</tr>
<tr>
<td>Minor Arterial</td>
<td>4-8'</td>
<td></td>
</tr>
<tr>
<td>Major Collector</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minor Collector</td>
<td>4-6' if no parking or bike lane</td>
<td>4-8'</td>
</tr>
<tr>
<td>Local Road</td>
<td>NA</td>
<td>2-8'</td>
</tr>
</tbody>
</table>
Right-of-Way Preservation

Common suburban and rural rights-of-way in Chester County are thirty-three feet. Right-of-Way elements include the cartway, shoulder and buffer area. The buffer provides an area for: snow storage, guide rails, sight distance, drainage, utilities, side slope, and pedestrian facilities. Right-of-way widths should vary according to the intended function of the road. Right-of-way preservation should include allowances for bus passenger facilities, including ADA accessible loading pads, bus shelters and ADA-compliant sidewalk connections, where appropriate.

Most preservation actions come under the authority of municipalities. Municipalities should:

- identify corridors in need of preservation;
- coordinate preservation efforts with other local jurisdictions; and,
- identify local resources for right-of-way acquisition and assess their availability in cases where advance acquisition appears appropriate.

The amount of required right-of-way should be based on design criteria listed in this document.

Municipalities may preserve rights-of-way for future use through the Pennsylvania Municipalities Planning Code, particularly in:

- Article III, Comprehensive Plan;
- Article IV, Official Map;
- Article V, Subdivision and Land Development; and,
- Article VI, Zoning.
During the times of diminishing tax bases and increasing costs of infrastructure and services, preserving rights-of-way for future use is important, especially when attempting to keep costs of acquisitions to a minimum.

Ultimate Right-of-Way

With some land developments, additional right-of-way is necessary to mitigate traffic patterns caused by trips generated by the development. This is generally referred to as "required" or "dedicated" right-of-way. In some cases, additional road widening is necessary to accommodate the greater public interest. While it may not be the responsibility of the developer to accommodate the long term public need, it is in the best interest of the developer to make the ultimate right-of-way available to the public for eventual acquisition and use. This technique will preserve property and building values when the roadway is widened. By precluding buildings and structures within the ultimate right-of-way, the cost of public acquisition is reduced, making the highway project more feasible.

The ultimate right-of-way is owned and maintained by the property owner with the understanding that the public may need to purchase it in the future. This provision can only be applied by a municipality through the subdivision and land development ordinance. The ultimate right-of-way needs to be shown on the subdivision plan and recorded on the deed.
Chapter 3
Design Elements

VEHICULAR CIRCULATION

Ultimate Right-of-Way

Pre-development condition

Developer dedicates additional right-of-way to accommodate development traffic and reserves ultimate right-of-way

Public agency acquires ultimate right-of-way to widen road

VeHICULAR CIRCULATION
RIGHT-OF-WAY WIDTH

An area of land, measured from the centerline of the cartway that can be used by the public for travel or to locate utilities. Existing right-of-way width can be determined through highway right-of-way plans or deeds for individual parcels.

Right-of-Way Width

A right-of-way must provide enough width for cartways, medians, shoulders, landscaping strips, sidewalks, utility strips, sign/signal pole placement, and necessary outer slopes and may be used for the future widening and channelization of a street. The width of the right-of-way varies by the functional classification of the roadway. According to the Urban Land Institute’s *Residential Streets*: Right-of-way width allowance for future street widening should be unnecessary in most well-planned residential neighborhoods. A need for future widening allowance on collector streets could be argued because of their through characteristic, but widening of a residential collector street will change the character of a neighborhood and increase the attractiveness of the street to through traffic. Such widening is viewed as undesirable—so every reasonable planning strategy should be utilized to preclude future widening needs for most residential area collector streets. By example *Residential Streets* recommends that the lowest right-of-way width for a lower order local road may be 24 feet. The best strategy usually is to assure sufficient arterial street capacity outside of the neighborhood to accommodate foreseeable traffic needs.

Recommendations

- Identify and implement a right-of-way preservation plan through the use of the ultimate right-of-way technique.
- Designate ultimate rights-of-way on all municipal roads which would reflect a built-out scenario.
- The ultimate right-of-way could:
 1. be used in an overlay zoning district along selected corridors; and
 2. be used in conjunction with setbacks to provide adequate distances between the roadway and structures. See SETBACKS design element.
- Credit the area set aside for the ultimate right-of-way in the calculation of overall density or square footage.
- Existing vegetation within the ultimate right-of-way line can remain. New landscaping should be focused as close to the ultimate right-of-way line as possible.
- The Chester County Planning Commission recommends the following inclusion on future subdivision and land development plans:

"The lots with frontage on State Route – shall be conveyed under and subject to a reservation of title granting unto the municipality the right and option of a continuing offer of dedication without further consideration of the right to accept all or any part of the lands lying within the area from the affected lot line to the proposed right-of-way line. This frontage area may..."
be accepted at any time or from time to time by the municipality for use thereof for highway improvements to be made by them at its sole cost and expense. This area is not dedicated by this plan."

Suggested Right-of-Way Widths (feet)

<table>
<thead>
<tr>
<th>Functional Classification</th>
<th>Land Use Context</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rural</td>
</tr>
<tr>
<td>Expressway</td>
<td>300</td>
</tr>
<tr>
<td>Major Arterial</td>
<td>150</td>
</tr>
<tr>
<td>Minor Arterial</td>
<td>100</td>
</tr>
<tr>
<td>Major Collector</td>
<td>80</td>
</tr>
<tr>
<td>Minor Collector</td>
<td>80</td>
</tr>
<tr>
<td>Local: Primary Distributor</td>
<td>60</td>
</tr>
<tr>
<td>Local: Secondary Distributor</td>
<td>50</td>
</tr>
<tr>
<td>Local Road*</td>
<td>50</td>
</tr>
<tr>
<td>Local Road**</td>
<td>33</td>
</tr>
</tbody>
</table>

* = Average Daily Traffic – more than 100 vehicles
** = Average Daily Traffic – less than 100 vehicles
VEHICULAR CIRCULATION

(Page intentionally left blank)
Roadway Design Standards

‘Roadway Design Standards’ pertains to multiple design elements, including: curbs, grades, medians, pavement, shoulder, signage, speed, and sight distance:

Curbs

Standards

AASHTO:

<table>
<thead>
<tr>
<th></th>
<th>Arterial</th>
<th>Collector</th>
<th>Local</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rural</td>
<td>No curb</td>
<td>6 In. vertical on right side</td>
<td>4 To 9 inch vertical</td>
</tr>
<tr>
<td>Urban</td>
<td>Vertical curb when needed</td>
<td>6 In. vertical on right side</td>
<td>4 To 9 inch vertical</td>
</tr>
</tbody>
</table>

PennDOT recommends use of AASHTO standards and PennDOT’s Publication 408, Specifications.

Comments

A curb serves one or more of the following purposes: drainage control; access control; pavement edge delineation and support; right-of-way reduction; aesthetics; delineation of pedestrian walkways; protection of pedestrians, signs, trees and grass; reduction of maintenance operations by preventing water seepage under the pavement; and assistance in orderly roadside development.
Chapter 3
Design Elements

VEHICULAR CIRCULATION

Types of curbs

(A) Vertical curb
(B) Flush curb
(C) Mountable curb
(D) Mountable curb
(E) Extruded bituminous curb

Vertical curbs (A) are steep faced. They are designed to inhibit or at least discourage vehicles from leaving the roadway. They can provide support to the pavement and protect the cartway from rapid deterioration. Vertical curbs are used for drainage control and in snow areas curbs protect the grass from damage by snow plows. Initial construction cost is higher, but vertical curbs are more durable than any other type of curbing. During the construction of a subdivision, driveway locations must be determined prior to development because curb depressions need to be made. For aesthetic purposes, a more expensive vertical granite or Belgian block curb may be used. An added feature of granite or Belgian block curbing is that it is easy to replace short segments.

Flush curbs (B) provide support for the pavement and allow stormwater to run off into a drainage swale. Parked vehicles can also park on the curb. Economical driveway construction can be undertaken without curb depression. Driveway locations can be determined at a later date allowing flexibility in the timing and location of driveway construction. Flush curbs should be used in conjunction with an open drainage system using swales. Drainage patterns should be closely examined to determine the pattern of stormwater runoff.

Mountable curbs (C and D) are several inches lower than vertical curbs and are slanted since they are designed to be crossed when required. Economical driveway construction can be undertaken without curb depression. Driveway locations can be determined at a later date allowing flexibility in the timing and location of driveway construction. They are also quite durable, but must be properly installed to be effective. Mountable
curbs are used for drainage control. Over time, mountable curbs may face more expensive repaving costs because of the limited area available to be resurfaced.

Extruded bituminous curbs (E) are initially less expensive than both vertical and mountable curbs, but are less durable and require a significant amount of maintenance by comparison. In areas with snow, damage is caused by snow plows. This type of curbing is customarily found in areas with low traffic volumes. Bituminous curbs provide no support for the pavement, but are good for drainage control on short segments of roadway.

Recommendations

- Recommend the use of curbing in all new developments. Type of curbing depends on the intended function of the road. Use the following guidelines to determine which curb type to use:
 - Vertical or mountable curbs should be used to control drainage.
 - Flush curbing should be used to recharge the groundwater.
 - Mountable curbing should be used where vehicles are expected to cross over the curb.
 - Extruded bituminous curbing should be used to control drainage on short segments of roadway.
 - Flush curbing should be used on narrow cartways in low density developments for pavement edge support.
 - Use combinations of different curbing where warranted by different drainage patterns.
 - The use of Belgian block curbing creates greater risk for tire damage and should be discouraged along transit routes unless adequate roadway width is provided to avoid its traverse.
Chapter 3
Design Elements

VEHICULAR CIRCULATION

Grades and Roadway Alignment

Standards

<table>
<thead>
<tr>
<th></th>
<th>Arterial</th>
<th>Collector</th>
<th>Local</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rural</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Design Speed mph</td>
<td>50</td>
<td>60</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>30</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>60</td>
<td>70</td>
</tr>
<tr>
<td>Level (%)</td>
<td>4</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>Rolling (%)</td>
<td>5</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>9</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>Mountainous (%)</td>
<td>6</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>8</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>14</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Urban</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Design Speed mph</td>
<td>30</td>
<td>40</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>20</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>40</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>Level (%)</td>
<td>8</td>
<td>7</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>Rolling (%)</td>
<td>9</td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>12</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>10</td>
<td>8</td>
</tr>
<tr>
<td>Mountainous (%)</td>
<td>10</td>
<td>10</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>14</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PennDOT: AASHTO standards with these additions</td>
<td>Arterial</td>
<td>Collector</td>
<td>Local</td>
</tr>
<tr>
<td>Rural</td>
<td>0.5% Min.</td>
<td>0.5% Min.</td>
<td>0.5% Min.</td>
</tr>
<tr>
<td>Urban</td>
<td>0.5% Min.</td>
<td>0.5% Min.</td>
<td>0.3% Min. – 15% Max.</td>
</tr>
</tbody>
</table>

Comments

Grades below the maximum values are always desirable, a minimum gradient on all curbed streets is necessary to prevent water from ponding. It is desirable to provide the flattest grades practicable that are consistent with the surrounding terrain.

Horizontal and vertical alignments should be designed together to complement one another to provide increased safety, uniformity of speeds and pleasing appearances. Avoid sudden changes in horizontal alignment by integrating the design speed and curvature of the roadway. Another way to reduce curvature is to super-elevate, or bank, the roadway. Super-elevation, side-friction and vehicle speed are the factors used to determine the horizontal alignment of a road. The topography, soil, geologic conditions, drainage patterns, potential runoff quantities, length and type of streets, and desired design characteristics should also be evaluated.
FHWA research on arterial roads shows that as the radius decreases, the accident rate increases. Residential streets can be designed to discourage high speed traffic by providing minimum horizontal alignment.

According to AASHTO, vertical curves should be simple in application and should result in a design that is safe, comfortable in operation, pleasing in appearance, and adequate for drainage. The major control for safe operation on crest vertical curves is the provision of ample sight distances for the design speed. Minimum stopping sight distances should be provided in all cases. Wherever economically and physically feasible, more liberal stopping sight distances should be used. Additional sight distance should be provided at decision points.

Recommendations

- Review each situation to determine the impact on the environment of altering roadway grades to meet specific standards.

- For grades, follow the general recommendations of *PennDOT Design Manual Part II: Highway Design: Chapter 2 –Design Elements*

- For roadway alignment, follow the recommendations of AASHTO’s *A Policy on Geometric Design of Highways and Streets.*

- Local roads within developments and streets within villages should be designed to discourage high-speed traffic by allowing the use of small horizontal radii.

- Preclude the use of maximum grade with the minimum curve radii.

Example of good roadway alignment.

Example of poor roadway alignment.
Chapter 3
Design Elements

VEHICULAR CIRCULATION

MEDIANS
The part of the divided highway separating opposing directions of travel.

Medians

Standards

AASHTO:

• Rural Arterial – Four to 6 feet wide under restricted conditions. Twelve to 30 feet at intersections to provide protection for left turning vehicles. Sixty feet or greater where feasible.

• Urban Arterial – A minimum width of 4 feet. A minimum of 12 feet, 18 feet desirable, at intersections to provide protection for left turning vehicles.

• Rural Collectors and all local roads do not require a median.

• Urban Collector – Two to 4 feet wide for a paint-stripe. Two to 6 feet wide for a narrow, raised median or curbed section. Ten to 16 feet wide for the above conditions with a left-turn lane.* Desirably 16 to 40 feet wide for left-turns and open space.

* An urban collector must have 4 lanes. For a list of suggested median opening widths for turning movements and U-Turns see AASHTO’s, A Policy on the Geometric Design of Highways and Streets.

PennDOT:

• Recommended use of AASHTO standards. Medians must be a minimum of six feet wide to allow for a pedestrian refuge area.

Comments

A median is a highly desirable element on roadways carrying four or more lanes since they provide:

• a storage area for left-turning and U-turning vehicles; a recovery area for out-of-control vehicles;
• a stopping area in case of emergencies;
• an area to provide safety treatment, such as a median divider or barrier;
• open space; and,
• extra right-of-way for future lanes.

Where intersections are signalized, wide medians may be disadvantageous by increasing the time required for vehicles to cross the median resulting in inefficient signal operations.
Recommendations

- Follow the recommendations of AASHTO Policy on the Geometric Design of Highways and Streets for median widths.
- Provide medians on four lane arterials.
- Preclude the opening of medians on arterial roadways for new development unless full channelization, and perhaps signalization, is provided.
- Provide some form of a barrier to preclude illegal left- and U-turn movements across grass medians.
- Provide landscaped medians, where practical, to reduce amount of impervious surfaces and to improve aesthetics.

Pavement

The selection of pavement type is determined by the volume and composition of traffic, soil characteristics, weather, performance of pavements in the area, availability of materials, energy conservation, the initial cost and the overall annual maintenance and service life cost. Pavement for residential streets should be designed to accommodate the volume and characteristics of traffic expected to use the streets.

Recommendations

- Consider the use of porous pavement on low turnover parking areas.

Signage

Although safety and efficiency of operation depend to a considerable degree on the geometric design of the facility, the physical layout must also be supplemented by effective signing as a means of informing, warning and controlling drivers. Signing plans coordinated with horizontal and vertical alignment, sight distance obstructions, operation speeds and maneuvers and other applicable items should be worked out before design completion.

Recommendations

- Follow the recommendations of the: Manual on Uniform Traffic Control Devices (MUTCD); the Pennsylvania Code, Title 67, Chapter 211, Official Traffic Control Devices; and PennDOT Publication 111 Pavement Markings and Signing Standards TC-8600 and TC-8700.
- Prohibit signs within clear sight triangles, except for traffic signs.
- Provide a breakaway device where signs are not protected.
- Place street name signs on traffic signal mast arms where applicable.

PAVEMENT

The combination of sub-base, base course and surface course placed on a subgrade to support the traffic load or distribute it on the roadbed, or both. The term normally includes the traveled portion of the highway and extends to the face of the curb in a curbed section, not including shoulders.

SIGNAGE

(aka markings) - Any sign, marking or device placed or erected for the purpose of regulating, warning or guiding vehicular traffic or pedestrians, or both.
Chapter 3
Design Elements

VEHICULAR CIRCULATION

DESIGN SPEED
The maximum safe speed that can be maintained over a specific section of road when conditions are so favorable that the design features of the road govern vehicle operation.

SPEED LIMITS
A restriction placed upon a road which legally establishes the minimum or maximum speed which vehicles may travel.

Speed
The designed speed should be a logical one with respect to the topography, the adjacent land use and the functional classification of the road. The design speed selected should be consistent with the speed the driver is likely to expect and all the pertinent features of the highway should be related to this speed to obtain a balanced design. (ITE)

Establish the design speed to attain a desired degree of safety and efficiency while under the constraints of environmental quality, economics, aesthetics, and social and political impacts

Recommendations
- Follow the recommendations of PennDOT Publication 70M, Guidelines for the Design of Local Roads and Streets.
- Design speeds for local roads should be calculated according to their intended function. Design speeds are not intended to replace legally posted speed limits.

Speed Limits
Proper use of speed regulation is based on the recognition that lower speeds reduce stopping distances and generally reduce the severity of accidents. Traffic moving at fairly uniform speeds flows more smoothly, with resultant improvements in both capacity and safety.

Transportation officials often receive requests to lower speed limits reflecting the opinion that the street is improperly posted or that vehicles are traveling at unsafe speeds. Such requests are based on the public misconception that lowering the speed limit will in fact reduce vehicle speeds and accidents.

The most effective means of controlling excessive speed is through enforcement.

Recommendation
- Follow the recommendations of the Pennsylvania Code, Chapter 33, Rules of the Road, to establish speed limits on new roads or altering speed limits on existing roads.
Stopping Sight Distance

Standards

Safe Stopping Sight Distances

<table>
<thead>
<tr>
<th>Design Speed (mph)</th>
<th>70</th>
<th>60</th>
<th>50</th>
<th>40</th>
<th>30</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distance (feet)</td>
<td>625</td>
<td>525</td>
<td>400</td>
<td>275</td>
<td>200</td>
<td>125</td>
</tr>
</tbody>
</table>

Safe Stopping Sight Distances on Horizontal Curves

<table>
<thead>
<tr>
<th>Design Speed (mph)</th>
<th>70</th>
<th>65</th>
<th>60</th>
<th>50</th>
<th>40</th>
<th>30</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distance (feet)</td>
<td>850</td>
<td>725</td>
<td>650</td>
<td>475</td>
<td>325</td>
<td>200</td>
<td>125</td>
</tr>
</tbody>
</table>

Minimum stopping distances and adjustments are based on wet pavement conditions.

Effect of Grade on Stopping Sight Distances

<table>
<thead>
<tr>
<th>Design Speed (mph)</th>
<th>3%</th>
<th>6%</th>
<th>9%</th>
<th>Assumed Speed (mph)</th>
<th>3%</th>
<th>6%</th>
<th>9%</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>10</td>
<td>20</td>
<td>30</td>
<td>28</td>
<td>Nv</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>40</td>
<td>20</td>
<td>40</td>
<td>70</td>
<td>36</td>
<td>10</td>
<td>20</td>
<td>30</td>
</tr>
<tr>
<td>50</td>
<td>30</td>
<td>70</td>
<td>NV</td>
<td>44</td>
<td>20</td>
<td>30</td>
<td>NV</td>
</tr>
<tr>
<td>60</td>
<td>50</td>
<td>110</td>
<td>NV</td>
<td>52</td>
<td>30</td>
<td>50</td>
<td>NV</td>
</tr>
<tr>
<td>70</td>
<td>70</td>
<td>160</td>
<td>NV</td>
<td>58</td>
<td>40</td>
<td>70</td>
<td>NV</td>
</tr>
</tbody>
</table>

Comments

Values exceeding the minimum stopping sight distance should be used as the basis for design wherever conditions permit since the use of a higher value will only increase the margin of safety.

Recommendation

- Follow the recommendations of AASHTO and for further details see *PennDOT’s Design Manual Part II, Chapter 2*.
- See also the PennDOT Driveway Sight Distance Measurements Form M-950S http://www.dot.state.pa.us/public/PubsForms/Forms/M-950S.pdf
Chapter 3
Design Elements

VEHICULAR CIRCULATION

Safe Stopping Sight Distance

Safe Stopping Sight Distance on Horizontal Curves
Roundabouts

Roundabouts are a subset of circular intersections with specific design and traffic control features. These features include yield control of all entering traffic, channelized approaches, and geometric curvature and features to induce desirable vehicular speeds (*Roundabouts: An Informational Guide*, Second Edition, 2010, Transportation Research Board, p.1-4).

Standards

PennDOT: Follow the recommendations contained in the Transportation Research Board’s National Cooperative Highway Research Program (NCHRP) Report 672: *Roundabouts: An Informational Guide*.

Comments

Roundabouts reduce traffic conflicts (for example, left turns) that are frequent causes of crashes at traditional intersections. Unlike a traffic circle or a rotary, a roundabout’s incoming traffic yields to the circulating traffic. (FHWA)

The following is an excerpt from the Federal Highway Administration’s *Technical Summary on Roundabouts* (FHWA-SA-10-006) regarding the benefits of roundabouts:

Roundabouts are becoming more popular based on the multiple opportunities to improve safety and operational efficiency, and provide other benefits. Of course, roundabouts are not always feasible and do not always provide the optimal solution for every problem. The benefits of roundabout intersections, and some constraining factors, are described below.

- **Traffic Safety** – Numerous studies have shown significant safety improvements at intersections converted from conventional forms to roundabouts. The physical shape of roundabouts eliminate crossing conflicts that are present at conventional intersections, thus reducing the total number of potential conflict points and the most severe of those conflict points. The most comprehensive and recent study showed overall reductions of 35 percent in total crashes and 76 percent in injury crashes [4]. Severe, incapacitating injuries and fatalities are rare, with one study reporting 89-percent reduction in these types of crashes [5] and another reporting 100-percent reduction in fatalities [6].
• **Operational Performance** – When operating within their capacity, roundabouts typically have lower overall delay than signalized and all-way stop-controlled intersections. The delay reduction is often most significant during non-peak traffic periods. These performance benefits can often result in reduced lane requirements between intersections. When used at the terminals of freeway interchanges, roundabouts can often reduce lane requirements for bridges over or under the freeway, thus substantially reducing construction costs. However, as yield-controlled intersections, roundabouts do not provide priority to specific users such as trains, transit, or emergency vehicles.

• **Environmental Factors** – Roundabouts often provide environmental benefits by reducing vehicle delay and the number and duration of stops compared with signalized or all-way stop-controlled alternatives. Even when there are heavy volumes, vehicles continue to advance slowly in moving queues rather than coming to a complete stop. This can reduce noise and air quality impacts and fuel consumption significantly by reducing the number of acceleration/deceleration cycles and the time spent idling.

• **Access Management** – Because roundabouts can facilitate U-turns, they can be a key element of a comprehensive access management strategy to reduce or eliminate left-turn movements at driveways between major intersections.

• **Traffic Calming** – Roundabouts can have traffic calming effects on streets by reducing vehicle speeds using geometric design rather than relying solely on traffic control devices.

• **Pedestrian Safety** – Due to the reduction of vehicle speeds in and around the intersection, roundabouts can improve pedestrian crossing opportunities. Additionally, the splitter island refuge area provides the ability for pedestrians to focus on one traffic stream at a time while crossing. However, pedestrians with visual impairments may not receive the same level of information at a roundabout as at a typical signalized intersection, and they may require additional treatments, such as pedestrian signalization. Specific design treatments for enhancing accessibility for visually impaired pedestrians are receiving continued study [7].

• **Aesthetics** – The central island and splitter islands offer the opportunity to provide attractive entries or centerpieces to communities through use of landscaping, monuments, and art, provided that they are appropriate for the speed environment in which the roundabout is located.
• **Land Use** – Roundabouts can provide a transition area between high-speed rural and low-speed urban environments. They can also be used to demarcate commercial areas from residential areas.

• **Ongoing Operations and Maintenance** – A roundabout typically has lower operating and maintenance costs than a traffic signal due to the lack of technical hardware, signal timing equipment, and electricity needs. Roundabouts also provide substantial cost savings to society due to the reduction in crashes, particularly fatal and injury crashes, over their service life. As a result, the overall life cycle costs of a roundabout can be significantly less than that of a signalized intersection.

• **Approach Roadway Width** – A roundabout may reduce the amount of widening needed on the approach roadways in comparison to alternative intersection forms. While signalized or stop-controlled intersections can require adding lengthy left-turn and/or right-turn lanes, a roundabout may enable maintaining a narrower cross section in advance of the intersection. However, roundabouts usually require more space for the circulatory roadway, central island, and sidewalks than the typically rectangular space inside traditional intersections. Therefore, roundabouts often have greater right-of-way needs at the intersection quadrants compared with other intersection forms.

The following table (Exhibit 1-9: Roundabout Category Comparison from the National Cooperative Highway Research Program (NCHRP) Report 672: *Roundabouts: An Informational Guide* – page 1-12) summarizes the basic geometry and capacities of roundabouts to provide for a quick assessment on the applicability of a roundabout for any proposed location.

<table>
<thead>
<tr>
<th>Design Element</th>
<th>Mini-Roundabout</th>
<th>Single-Lane Roundabout</th>
<th>Multi-lane Roundabout</th>
</tr>
</thead>
<tbody>
<tr>
<td>Desirable maximum entry design speed</td>
<td>15-20 mph (25 to 30 km/h)</td>
<td>20-25 mph (30 to 40 km/h)</td>
<td>25-30 mph (40 to 50 km/h)</td>
</tr>
<tr>
<td>Maximum number of entering lanes per approach</td>
<td>1</td>
<td>1</td>
<td>2+</td>
</tr>
<tr>
<td>Typical inscribed circle diameter</td>
<td>45 to 90 ft (13 to 27 m)</td>
<td>90 to 180 ft (27 to 55 m)</td>
<td>150 to 300 ft (46 to 91 m)</td>
</tr>
<tr>
<td>Central island treatment</td>
<td>Fully traversable</td>
<td>Raised (may have traversable apron)</td>
<td>Raised (may have traversable apron)</td>
</tr>
<tr>
<td>Typical daily service volumes on 4-leg roundabout below which may be expected to operate without requiring a detailed capacity analysis (veh/day)*</td>
<td>Up to approximately 15,000</td>
<td>Up to approximately 25,000</td>
<td>Up to approximately 45,000 for two-lane roundabout</td>
</tr>
</tbody>
</table>

* Operational analysis needed to verify upper limit for specific applications OR for roundabouts with more than two lanes or four legs.
Chapter 3
Design Elements

VEHICULAR CIRCULATION

Existing Roundabout in Unionville, Chester County.

Roundabout in the Uptown Worthington development in East Whiteland Township, Chester County, PA.

Recommendations

• Refer to PennDOT’s Roundabout Website for the latest guidance regarding roundabouts.

• Follow the recommendations contained in the Transportation Research Board’s National Cooperative Highway Research Program (NCHRP) Report 672: Roundabouts: An Informational Guide.
Traffic Calming

Also known as: Residential Street Controls

“The combination of mainly physical measures that reduce the negative effects of motor vehicle use, alter driver behavior, and improve conditions for non-motorized street users.” - Institute of Transportation Engineers (ITE)

Standards

The following is an excerpt from Pennsylvania’s Traffic Calming Handbook, (PennDOT Pub 383):

When Is Traffic Calming Appropriate?

Using a well-defined “Traffic Calming Study and Approval Process” will help determine when and where traffic calming measures are appropriate. Because traffic calming measures have the potential to create controversy, their installation often occurs as the final step of a three-step process referred to as the “three E’s” (education, enforcement, and engineering). However, this three-step process only addresses problems with speeding, not with cut-through volumes. If the first two steps are not effective in lowering speeds on neighborhood streets, the need for traffic calming measures becomes more apparent.

Education

Municipalities with educational programs seek to remind speeding drivers of the negative effects of their actions, often by stressing that the community’s children are the most at risk. Educational campaigns may use brochures or neighborhood newsletters to spread this message. Newsletters may also contain information on speeding fines (particularly in school zones), pedestrian and bicycle safety tips, and information on average speeds in the neighborhood.

Enforcement

Enforcement involves a more intensive police presence and a greater allocation of time to enforcing the speed limit in a particular neighborhood. Unfortunately, it is often not practicable to maintain a police presence at the level needed to permanently lower speeds. However, consistent visible enforcement does lead to respect of the speed limit by motorists.
Engineering
Engineering includes, but is not limited to, traffic calming measures. It can also include the use of signs and pavement markings to obtain the desired effect. Prior to installing traffic calming measures on local or collector streets, traffic conditions on adjacent arterial streets should be investigated to determine if operational deficiencies are contributing to the identified traffic concerns. If the adjacent arterial streets are the responsibility of the local government, these deficiencies should be addressed before traffic calming is considered. In addition, when the use of traffic calming measures may divert large volumes of traffic from local streets, the effects on adjacent roadways should be addressed.

Where are traffic calming measures appropriate?
As outlined in the “Traffic Calming Study and Approval Process”, functional classification and land use should be primary criteria in determining whether traffic calming measures are appropriate for a particular roadway. When conditions warrant, traffic calming measures may be appropriate on the following roadway types (local or State-owned):

- Local residential streets
- Collector streets with predominantly residential land uses
- Arterial roads within downtown districts or commercial areas (with posted speeds of 40 mph or less)

Traffic calming measures addressed in the PennDOT handbook include:

- Curb Extensions/Bulb-Outs
- Chicanes
- Gateways
- On-Street Parking
- Traffic Circles
- Roundabouts
- Speed Humps
- Speed Cushions/Speed Pillows
- Raised Intersections
- Diagonal Diverters
- Right-In/Right-Out Island
- Raised Median Through Intersection
- Street Closures
- Pedestrian Safety Enhancement Devices
Comments

The first function of residential streets is to serve abutting properties. They provide access to homes by all who enter and leave, make deliveries and provide services. A secondary function is to provide routes for those who wish only to pass through the area. Residential streets offer opportunities to provide landscaped vistas, trees, shrubs, paths for walking and rights-of-way for utilities. Basic conflict arises due to the discrepancy between the impact of vehicular traffic and the tranquility of residential streets.

When considering the use of residential street controls, residents should be included in the process. Residents will determine the needs and priorities of the neighborhood. Their response to the proposed plans and the ultimate approval will be important in implementing the plan.

Recommendations

• Follow the recommendations contained in PennDOT Publication 383, *Pennsylvania’s Traffic Calming Handbook*.
• Evaluate existing conditions relative to community needs and desires;
• Allow traffic implications to be evaluated by a traffic engineer to determine the appropriate control; and,
• Municipalities should seek professional advice to avoid liability issues.
(Page intentionally left blank)
Vehicle Characteristics

Also known as: Vehicle turning radii and dimensions.

Definition
The dimensions and operating characteristics of selected motor vehicles.

Standard

Please refer to the chart on the following page for the Minimum Design Turning Radius (A) and Minimum Inside Turning Radius (B) values.
Chapter 3

Design Elements

VEHICULAR CIRCULATION

Select Vehicle Dimensions and Turning Radii

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Design Vehicle Type</th>
<th>Width (ft)</th>
<th>Length (ft)</th>
<th>A Minimum Design Turning Radius (ft)</th>
<th>B Minimum Inside Turning Radius (ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>Passenger Car</td>
<td>7.0</td>
<td>19</td>
<td>24</td>
<td>14.4</td>
</tr>
<tr>
<td>Su</td>
<td>Single Unit Truck/Ambulance</td>
<td>8.0</td>
<td>30</td>
<td>42</td>
<td>28.3</td>
</tr>
<tr>
<td>Bus-40</td>
<td>Intercity Bus</td>
<td>8.5</td>
<td>40</td>
<td>45</td>
<td>27.6</td>
</tr>
<tr>
<td>A-Bus</td>
<td>Articulated Bus</td>
<td>8.5</td>
<td>60</td>
<td>39.8</td>
<td>25.4</td>
</tr>
<tr>
<td>Wb-40</td>
<td>Intermediate Semitrailer</td>
<td>8.0</td>
<td>45</td>
<td>40</td>
<td>19.3</td>
</tr>
<tr>
<td>Wb-50</td>
<td>Large Semitailer</td>
<td>8.5</td>
<td>55</td>
<td>45</td>
<td>17.0</td>
</tr>
<tr>
<td>Wb-62</td>
<td>Interstate Semitrailer</td>
<td>8.5</td>
<td>69</td>
<td>45</td>
<td>7.9</td>
</tr>
<tr>
<td>Wb-67</td>
<td>Interstate Semitrailer</td>
<td>8.5</td>
<td>74</td>
<td>45</td>
<td>4.4</td>
</tr>
<tr>
<td>Wb-100T</td>
<td>Triple Trailer Combination</td>
<td>8.5</td>
<td>105</td>
<td>45</td>
<td>9.9</td>
</tr>
<tr>
<td>Wb-109D</td>
<td>Turnpike Double Combination</td>
<td>8.5</td>
<td>114</td>
<td>60</td>
<td>14.9</td>
</tr>
<tr>
<td>Mh</td>
<td>Motor Home</td>
<td>8.0</td>
<td>30</td>
<td>40</td>
<td>25.9</td>
</tr>
<tr>
<td>P/T</td>
<td>Car and Camper Trailer</td>
<td>8.0</td>
<td>49</td>
<td>33</td>
<td>17.4</td>
</tr>
<tr>
<td>P/B</td>
<td>Car and Boat Trailer</td>
<td>8.0</td>
<td>42</td>
<td>24</td>
<td>8.0</td>
</tr>
<tr>
<td>Mh/B</td>
<td>Motor Home and Boat Trailer</td>
<td>8.0</td>
<td>53</td>
<td>50</td>
<td>35.1</td>
</tr>
</tbody>
</table>

Recommendation

chapter four

Bringing It All Together
Bringing It All Together

This chapter depicts a number of typical development scenarios where many of the Chapter 3 Design Elements may be applied in the same context and illustrates how the application of multiple design elements can significantly improve the function and aesthetics of any proposed development towards accommodating all transportation modes.

The sample contexts are a cross section of development patterns where multimodal design is applicable, including:

- Commercial Centers;
- Corporate & Employment Centers;
- Major Residential Subdivisions; and,
- Streetscapes.

A Land Development Review Checklist at the end of this chapter provides a quick reference regarding the applicability of certain design elements based on the location and/or size of the proposed development.

Commercial Centers

Example of a centrally located 'Hub Stop' in a commercial development.

Example of a large retail/big box commercial development and application of various design elements.
The development of large shopping/commercial centers almost always includes a significant amount of surface parking spaces designed to meet the peak holiday shopping season demand. While this handbook recommends various ways to reduce these parking space requirements, following the standards of many current ordinances results in these commercial centers having large expanses of paving which can create detriments to both the natural environment and the human experience. Application of the design elements indicated in the image above can make the circulation components of these commercial centers be truly multimodal and the overall site better designed for the human experience.

When applied to this development scenario the following design elements will better provide for all transportation modes:

- **A Bus (Hub) Stop** allows for access to the site for public transit. Centrally locating this transit stop balances the need to access the site with the need for route efficiency which is essential to a timely and reliable transit system;

- **ADA accessible Walkways and Crosswalks** emanating from the transit stop and connecting to all building entrances provide for a safe pedestrian-only environment for the ‘last mile’ connection between public transit and the destinations. **Walkways** located between parking bays aligned with building entrances provide for a similar pedestrian-only environment which minimizes potential interactions between pedestrians and automobiles;

- **Bicycle Parking** at all destinations, preferably nearest the building entrances and well lit provide the necessary bicycle storage (and thus the option) for patrons who should choose to ride their bicycles to these centers; and,

- Parking areas located furthest away from building entrances that are typically available outside of the peak shopping season may have a shared use as a **Park and Ride** facility. These underused parking locations should also have a pedestrian connection to the transit stop where feasible.

Other design elements that enhance the human experience of commercial developments and their safety include:

- **Lighting** – essential for safe nighttime use of the facility; and,

- **Landscape Material** that has many benefits for these large parking lots, including the creation of a more comfortable human scale by visually breaking up the large expansive views of paving and providing some buffer between pedestrians and automobiles, but perhaps more importantly through reduction of the heat island effect resulting in a more comfortable microclimate.
One of the more important, but often unseen components to the circulation system associated with parking lots are the stormwater management measures that help to slow, cool and infiltrate stormwater runoff before it enters either the natural stream or groundwater systems. The better these systems are designed – often incorporating multiple best management practices (BMPs) – the more sustainable these developments will be with less impact on the natural environment.

Corporate & Employment Centers

Corporate & Employment Centers are unique in the fact that many of those locations developed in the 1980’s and early 1990’s were A) designed for the automobile as the primary (if not only) mode of transportation that would be used to access them, and B) have little or no associated mixed uses such as bars/restaurants, coffee shops, or other service industries within walking distance. This resulted in developments that are devoid of any pedestrian facilities because they were simply not envisioned to be necessary and incurred additional development costs. The same goes for public transit facilities – the vast majority of building occupants work in relatively high-paying white collar jobs, and with ample free parking provided, public transportation was the far less desirable transportation mode alternative for the everyday commute.
When applied to this development scenario the following design elements will better provide for all transportation modes:

- **A Bus Stop** allows for access to the site for public transit. As these corporate centers are redeveloped and/or diversify to include more service related uses, and as development density around these campuses resulting in more highway congestion, public transit facilities will have much more demand;

- **ADA accessible Walkways and Crosswalks** emanating from the transit stop and connecting to all building entrances provide for a safe pedestrian –only environment for the ‘last mile’ connection between public transit and the destinations.

- **Bicycle Parking** at all destinations, preferably nearest the building entrances and in combination with locker/shower facilities located within the buildings would encourage an increase in bicycling as a more amenable transportation mode alternative; and,

- **Cul-de-sacs and other internal roadways** should be designed appropriately to provide for the ample turning radii for the vehicles accessing these sites while limiting the development footprint and creation of impervious surfaces that generate excess stormwater runoff.

Other design elements that can enhance the human experience of these corporate centers include:

- **Lighting, Landscape Material**, and the creation of outdoor gathering spaces will provide for better human experience of the developments by injecting the visual presence of life and vitality to what may otherwise be perceived as a sterile campus-like environment. While many of the existing corporate centers have a nice array of landscape material that creates an aesthetically pleasant appearance, the lack of pedestrian facilities and gathering spaces does not permit users of these centers to interact with that environment.

Like many of the of the previously mentioned large/big box retail centers that are developed in the suburban environment, traditional corporate centers were developed to a larger scale that ids difficult to integrate into the community fabric. Therefore, the application of these and other design elements described herein though either a retrofit or redevelopment process will only make these corporate/employment centers more viable and sustainable for long term integration with their adjacent communities.
Major Residential Subdivisions

Many of the more modern residential developments have adopted many smart growth initiatives to minimize impacts to the natural environment and reduce infrastructure development costs. These ‘New Urbanist’ residential developments also strive to combine traditional suburban development amenities with those of more dense urban residential neighborhoods in an effort towards community building and greater social interaction. This results in the provision for a multitude of different multimodal circulation options within these developments.

When applied to the residential development scenario, the following design elements will better provide for multimodality and a better quality of life for its residents:

- A **Bus Stop** connected by a walkway could serve as both public transit and a school bus stop. Like transit agencies, school bus routing strives to achieve an efficiency with their routes to increase efficiency and minimize excess operation and maintenance costs associated with longer routing;

- ADA accessible **Walkways** and **Crosswalks** provide for safe pedestrian routes to and between all locations within the community. These walkways provide not only transportation routes between all possible locations within the development, but also serve as additional recreational amenities contributing to the health and well-being of its residents;
Chapter 4
Bringing It All Together

- **Multi-Use or Use-Restricted Trails** are common elements within these PRDs that provide a recreational resource residents can walk to from their homes without the need to drive their cars. These trail systems may also have connections to adjacent planned residential development (PRD) trail systems or access to a regional publicly owned multi-use trail system that helps to integrate the development into the community fabric;

- **On-Street Parking** and **Traffic Calming Measures** help to limit the speed of automobiles traveling through these communities thus making them safer; and,

- **Deceleration Lanes** and **Boulevard** entrances provide a buffer and transition from the highway system and an aesthetically pleasing gateway into these communities.

Application of these and other appropriate design elements into PRD developments can not only provide for better accessibility and circulation options, but also create more cohesiveness within the communities themselves through increased opportunities for social interaction.

Streetscapes
The following are three examples of streetscape development across the range of development density and intensity from Village/Rural to Suburban to Urban.

Example of a Village/Rural streetscape development applying various design elements.
Village/Rural streetscape developments are typically the least intensive developments relative to the application of design elements as compared to more densely developed streetscapes in suburban or urban locations. Village Streetscapes may simply be a tree lined walkway that provides the simple utility of connecting destinations and a visual definition between the street and the adjacent buildings or residences. Some may, as in the example shown above, incorporate On-Street Parking to accentuate that buffer as a traffic calming element.

Suburban streetscapes typically offer an increased level of amenities such as pedestrian Lighting, increased use of Landscape Material, pedestrian level navigation signage, and where located along an existing transit route, a Bus Stop with shelter. Due to the higher speeds of the adjacent roadways without on-street parking, a minimum 5 foot wide buffer space is located between the sidewalk and the roadway. Where long distances are required to cross multi-lane entrances, traffic islands may be used to provide relief for pedestrians to cross them incrementally.
Urban streetscapes are the most intensely developed streetscapes as there are many more factors to consider in their design and implementation. This is driven primarily by urban density and the need to fit many different elements into a relatively smaller amount of available space. Urban streetscapes typically have very wide walkways extending from building face to curb offering opportunities to create public gathering spaces with outdoor cafes, pocket parks, and seating areas with the addition of site furniture including benches and trash receptacles.
Land Development Review Checklist

General

☐ Is the project site located within a Landscapes2 Growth Area?
☐ Is the primary site access roadway a State Road or a Local Road?
☐ What is the functional classification of the primary access roadway?
☐ Is the project site located within more than one municipality?

Bicycle/Pedestrian

☐ Does the project site have an adjacent existing sidewalk/walkway system?
☐ Does the project site municipality have a bicycle/pedestrian mobility plan, or have any bicycle/pedestrian elements indicated on their Official Map or Comprehensive Plan?
☐ Is there an existing or planned regional multi-use trail located adjacent to or within a ¼ mile of the project site?
☐ Is there a proposed internal walkway system included with the proposed development?
☐ Does the proposed internal walkway system adhere to ADA standards (including required number of parking spaces, if applicable)?
☐ Is the proposed development a commercial, industrial, or institutional land use with equal to or greater than fifty-thousand (50,000) square feet, OR a multifamily residential development with 50 or more dwelling units? If yes, is there proposed Bicycle Parking?
☐ If not within the thresholds noted above, would Bicycle Parking be appropriate for the proposed development/land use?

Public Transportation

☐ Is the project site/proposed development located along an existing public transit route? Within ¼ mile?
☐ Is there an existing bus stop located at or adjacent to the proposed development? If yes, how many daily boards are associated with that stop?
☐ Is there a bus stop proposed with the development? If yes, are there sidewalks/walkways connecting the proposed bus stop to the nearest building entrance or existing pedestrian system?
☐ Is the proposed development a commercial, industrial, or institutional land use with equal to or greater than fifty-thousand (50,000) square feet? If yes, is there a proposed bus stop?
Chapter 4
Bringing It All Together

☐ Is the proposed development a residential development equal to or greater than one hundred (100) dwellings units? If yes, will the proposed community have school age children? If yes to one or both, is there a proposed bus stop(s)?

☐ Is there an opportunity to provide for a shared use Park and Ride facility?

Infrastructure & Amenities

☐ Is Emergency Access included in the proposed land development plans?

☐ Will the proposed land use generate significant night time use? If yes, is there a lighting plan included with the land development plans?

☐ Is the proposed number of parking spaces appropriate for the proposed land use?

☐ Are there any opportunities for shared use parking?

☐ Are there any required buffers for adjacent land uses?

☐ Does the land development proposal include a Landscape Plan prepared by a landscape architect?

Vehicular Circulation

☐ Does the proposed development’s street design match/comply with Multimodal Handbook standards?

☐ Acceleration/Deceleration Lanes

☐ Boulevard

☐ Cul-de-Sac/Spur Roads

☐ Lane Design (Local & Internal Roadways)

☐ Roundabouts

☐ Traffic Calming Measures

☐ Do the proposed driveways/intersections provide for clear sight triangles and adequate sight and stopping distances?

☐ Are the proposed local and internal roadway lane widths appropriate for the development?

☐ Does the proposed development’s circulation system provide the proper turning radii for all vehicle types that will use the development, including service and emergency vehicles?

☐ Is the adjacent public right-of-way(s) wide enough to accommodate future widening of the roadway?
chapter five

Resources
Previous chapters of this handbook have specified the design aspects which should guide the construction or reconstruction of the multimodal transportation system. This chapter identifies the planning efforts which should be considered to institutionalize these principles into municipal plans and ordinances. This chapter presents the tools, such as plans, programs or ordinances, which can be used to guide the development of the transportation system in a community.

The Pennsylvania Municipalities Planning Code (Act 247, as amended) delegates most of the power to regulate land use to individual municipalities. Significant transportation issues such as access to state roads and the provision of new highway capacity are primarily the responsibility of the state. Regardless of this separation of powers, there are tools and procedures that foster the coordination of multimodal circulation and land use among all levels of government.

The following exhibit provides a conceptual framework of the many tools that can be established by a municipality and used by landowners and developers. Each tool listed in the exhibit is directly linked to the comprehensive plan, the focal point for all municipal planning. An interactive relationship exists between these various tools. For example, a comprehensive plan may identify a highway corridor which needs more detailed evaluation. Through an access management study, specific recommendations can lead to revisions in the zoning and subdivision and land development ordinances. These steps then lead to an update or amendment to the comprehensive plan.
Land Development Process

The review of any development plan focuses on the consistency of that plan with the policies and ordinances of the municipality. To some extent these are independent reviews which should carefully consider the relationship of the plan to the future vision of the municipality and to the specific provisions of the various land use regulations. It is through the review process that the municipality has the opportunity to link the individual site to the community.

Sketch Plan

A sketch plan is a general layout of the entire property proposed for development. This optional stage in the development process identifies the proposed use of the land and shows:

- the developer's concept for the land;
- the relationship of the subdivision to adjacent land;
- the road network; and,
- the natural features of the land area.

For more specific details and the suggested elements of a sketch plan see the subdivision and land development ordinance for the appropriate municipality.

Sketch Plan Review

While a sketch plan is not a requirement of the Municipalities Planning Code, it provides an applicant with an opportunity to receive input on an informal basis, prior to major expenditures of money and time on preliminary engineering.

The Chester County Planning Commission provides an unofficial sketch plan review service. This service provides an exchange of public and private objectives in an informal setting without duress of time and regulations. Information and suggestions can be provided on access locations and the internal and external circulation network.

Preliminary Plan Review

Based on information received in the sketch plan, preliminary engineering can be initiated. The preliminary plan must then go through a three level review:

1. The municipal planning commission first determines how the plan relates to policies established in the comprehensive plan and how the plan conforms with existing ordinances. To assist in its review, the planning commission needs to utilize outside resources including the municipal engineer, traffic engineers, PennDOT, and other agencies.
2. The Municipalities Planning Code requires that plans be submitted for review to the county planning commission.

3. The elected body provides a review from a policy standpoint with input from all the previous sources.

The municipal review should focus on compliance with ordinances but should also consider the planning principles and design concepts listed in this chapter.

Traffic Studies

The review process must consider impacts caused by the proposed development. Impacts are determined through traffic impact studies which can be required in a land development ordinance. Municipalities can set guidelines for studies to establish consistency in the format and content. More information regarding traffic impact studies may be found in Chapter 5 – Resources.

Several municipalities throughout Chester County have retained traffic engineers for the purpose of interpreting traffic studies prepared for proposed developments. This provides the municipality an unbiased, professional interpretation of the impacts and strengthens their ability to discuss and negotiate matters relative to the proposal.

Coordination with PennDOT

Determining Roadway Ownership

The first step in determining if coordination with PennDOT will be necessary is to determine whether or not the roadway associated with the proposed development is Local Road or a State Road. This can be done by referring to PennDOT's Type 10 map for Chester County.

Type 10 maps clearly identify state roads with either the standard keystone shield with route number, or with a 4-digit SR number along the roadway. Local roads are typically in a different color and do not have any designated numbering. Please refer to the sample Type 10 map on the next page:
An open, working relationship among PennDOT, the municipality and the developer is an essential ingredient in the implementation of properly functioning access points on state roads. Because of the jurisdictional differences in the control of land use and access, it is critical that municipal concerns about access be conveyed to PennDOT and that PennDOT provide their perspectives on the proposal to the municipality. In some cases, one entity is working on access matters without the benefit of knowing what suggestions or decisions have been made by other jurisdictions.

Access/Highway Occupancy Permits

A land owner or developer must obtain permission from PennDOT to build a driveway or intersection accessing a state highway. This is referred to as an access permit or a highway occupancy permit. The specific provisions and procedures of the access permit process are detailed in Pennsylvania Code Chapter 441: *Access to and Occupancy of Highways by Driveways and Local Roads*. Because access to state roads is a right deeply embedded in common law, PennDOT has limited grounds for denying an access permit.

PennDOT has developed a procedure in which they require notification from the municipality before PennDOT conducts a review. This procedure is established under the provisions of Pennsylvania Code, Title 67, Chapter 441.3(J) and is initiated after the municipality files a request with PennDOT asking to be included on a review list. Once the municipality is included on the list no access permit application will be accepted by PennDOT’s permit supervisor without a notice from the appropriate municipality.
There is a statute which indirectly deals with the coordination of municipal and PennDOT reviews. Article V, Section 508 of the Municipalities Planning Code states that plats requiring access to state roads shall not be finally approved unless the plat contains a notice that a highway occupancy permit is required.

An effective method of insuring coordination would be through the use of interim or preliminary approvals. The flow chart below illustrates a step by step process which should be followed to enable municipalities to use PennDOT’s recommendations and vice versa. Conscientious developers will basically follow this process on an informal basis even though it is not required by statute or ordinance.

How a Plan Should Relate to the Access Permit

1. Applicant submits preliminary subdivision or land development plan to municipality.
2. Applicant submits copy of same preliminary plan with letter from municipality to PennDOT.
3. PennDOT performs interim review and issues general decision of access location.
4. Municipality conducts review using PennDOT’s general decision.
5. Municipality approves plan conditioned on PennDOT’s approval or access permit.
6. Applicant formally applies for PennDOT’s access permit with plan which shows municipality’s conditional approval.
7. PennDOT issues access permit.
8. Municipality signs final plan.

Source: Chester County Planning Commission, 1993

Coordination with Other Municipalities

It is rare to find a major land development that does not have implications on traffic patterns and problems in neighboring municipalities. Any project which has a regional market or labor pool such as a large shopping center or an office park will draw traffic from and through adjacent communities. This is particularly evident where neighboring municipalities share a common expressway or arterial road. It is therefore important to establish direct coordination between municipalities on matters relating to comprehensive plans, zoning ordinances and traffic studies.

Existing enabling legislation provides limited opportunities for intermunicipal coordination. The Municipalities Planning Code indicates that plans and ordinances should be forwarded to adjacent municipalities before adoption. The Traffic Impact Fee law, Act 209, actually precludes the creation of intermunicipal impact fees but does require that one of the necessary studies be forwarded to adjoining municipalities for review.
Chapter 5

Resources

One aspect of the Municipalities Planning Code which provides opportunities for municipal coordination is joint municipal zoning. This allows municipalities to develop compatible zoning and to offer suggestions in rezonings which occur in the other municipalities. Coordinated zoning can lead to the development of a coordinated circulation network.

The following identifies other specific practices that can be used to improve inter-municipal coordination:

1) In reviewing a subdivision or land development plan, a municipality should identify how the plan relates to the policies, plans and ordinances of the adjacent municipality. This can be done by reviewing the proposal with the zoning ordinance, the highway functional classification and possibly the capital improvements plan of the adjacent municipality or by requesting that the adjacent municipality provide their own review. This can be expedited through a regular exchange of information between municipalities.

2) For projects of a regional nature, PennDOT should supply a copy of their comments on access applications to adjoining municipalities.

3) For land development projects which involve a change in a traffic signal system, coordination with adjacent municipalities on possible signal interconnection can mitigate some traffic problems.

4) All circulation networks need to be coordinated including pedestrian networks, transit routes, park and ride facilities, and spur roads.

Tools for Multimodal Transportation Planning

Access Management and Corridor Studies

Access management is a planning tool used to protect the operating capabilities of the existing road network by providing improved safety and capacity of access points.

The Transportation Research Board's (TRB) Access Management Manual defines access management as:

“...the systematic control of the location, spacing, design, and operation of driveways, median openings, interchanges, and street connections to a roadway. It also involves roadway design applications, such as median treatments and auxiliary lanes, and the appropriate spacing of traffic signals. The purpose of access management is to provide vehicular access to land development in a manner that preserves the safety and efficiency of the transportation system.”

Severe limits on the availability of conventional highway funds from public sources and a growing consciousness of environmental concerns have
dramatically changed perspectives and opportunities for major capacity improvements to the highway network. The inability to provide new highway capacity for most arterial roads leads to an alternative planning approach—one that focuses on finding low cost solutions to preserve and improve operating and safety capabilities. This approach is generally referred to as access management.

Separate enabling legislation gives municipalities powers on land use matters and the Pennsylvania Department of Transportation powers on access matters on state highways. Because of this separation of jurisdictional powers, it becomes necessary to coordinate land use and traffic. Access management studies provide a vehicle for inter-jurisdictional and inter-municipal coordination along highway corridors.

For more information regarding access management, please refer to the PennDOT publication #574: *Access Management: Model Ordinances for Pennsylvania Municipalities Handbook*

Bicycle/Pedestrian Mobility Plans

A Bicycle/Pedestrian Mobility Plan is a specific study that focuses on the bicycle and pedestrian facilities within a community. Both facility types are inventoried, including sidewalks, walkways, multi-use trails, use-restricted trails, crosswalks, and overall ADA accessibility. From this inventory, gaps are identified and then prioritized for implementation. Findings from these studies may result in recommendations for amending the comprehensive plan and/or adding recommended improvements to an official map.

Circulation Element of a Comprehensive Plan

The comprehensive plan helps a community prepare itself for future changes by documenting actions that need to be taken to guide the community based on the established goals. One of the critical components of a comprehensive plan is the circulation element which contains an outline of current transportation related conditions and recommendations necessary to address current and anticipated problems.

An inventory of existing conditions enables a municipality to determine future transportation needs based on current trends, and the goals and objectives established by the plan. The following is a listing of what should be considered in the circulation element of a comprehensive plan:

- Circulation Inventory
- Analyses
 - Traffic Volume Studies
 - Truck Movements
 - Capacity and Level of Service (LOS) Analysis
 - Safety Problems
Resources

- Access Problems
- Regional Issues Analysis
- Travel Time Analysis
- Functional Classification
- Parking Analysis
- Public Transportation
- Bicycle and Pedestrian Circulation Analysis

- Planning Implications
- Summary of Needs and Recommendations
- Implementation Strategies

Greenways/Open Space & Recreation/Trails Plan

These plans are typically geared towards the recreation elements within a community and may or may not include trails as part of the discussion. Since trails serve recreation and transportation needs, these plans can identify additional facilities that will provide for a complete multimodal transportation system.

The Pennsylvania Department of Conservation and Natural Resources (DCNR) Bureau of Recreation and Conservation provides matching funds to local municipalities towards the development of these plans through their annually funded Community Conservation Partnerships (C2P2) Program. The following DCNR webpage provides links to their standard scope of work/contents for each study type.

The recommended trail alignments and/or networks resulting from these plans should be considered as additional transportation elements to a comprehensive plan or added to an official map.

Municipal or Area Wide Transportation Studies

The purpose of a municipal or area-wide traffic study is to evaluate the existing highway network to determine the impacts of different land development scenarios and to identify improvements which will be needed to accommodate future traffic demand. The study may focus on a particular area or may include an entire municipality or a combination of municipalities.

Studies conducted in Chester County have been unique to each municipality. The study structure tends to be centered on individual needs or perceived problems of the community. Examples of problems include increased congestion, perceived safety hazards or inadequate parking.

The product of a traffic study should be an inventory of improvements intended to relieve existing and future inadequacies. The study should develop short and long term traffic improvement programs,
estimated project costs, and recommendations for implementation. The recommendations should be incorporated into the comprehensive plan of the municipality.

Municipal or area-wide traffic studies contain items similar to the circulation element of a comprehensive plan, but provide more detailed inventories and analyses:

- Existing Conditions
- Future Land use
- Background Traffic Growth
- Traffic from Future Development
- Future Traffic Volumes
- Levels of Service (LOS)
- Deficiencies
- Immediate Action Program
- Roadway Improvement Program
- Priorities and Implementation

Official Map

The Official Map is an important mechanism which can be used to turn goals of a comprehensive plan into reality. An "Official Map" is not a zoning map, a street map or a map from the comprehensive plan. It is a separate map which identifies public interest and need for the purpose of reserving lands for public use. An official map can be used as a tool to implement the transportation network and other community facilities.

The official map can be used to delineate the following:

- Existing and proposed public streets, watercourses and public grounds, including widening, narrowing, extensions, diminutions, openings or closing of same;
- Existing and proposed public parks, playgrounds and open space reservations;
- Pedestrian ways, bicycle trails and easements;
- Railroad and transit rights-of-way and easements;
- Flood control basins, floodways and flood plains, storm water management areas and drainage easements; and
- Support facilities, easements and other properties held by public bodies undertaking any element of a comprehensive plan.

An official map need not be a fully engineered map. A municipality may use property records, aerial photography, or other methods sufficient for identification, description and publication of the map components.
Chapter 5

Resources

A municipality does not need to survey the designated lands until the property is to be acquired. For more information refer to Article IV of the Municipalities Planning Code.

Traffic Impact Studies

The Institute of Transportation Engineers (ITE) states that the purpose of a traffic impact study is to evaluate proposed developments and assist in making land use decisions related to traffic. Decisions involve which on- and off-site improvements need to be made to accommodate traffic created by new development.

An impact study is an integral tool to provide an effective, municipal circulation system. According to ITE, if the study is conducted properly it should provide answers to the following questions:

• What are the existing traffic conditions?
• What additional traffic will be generated by the proposed development?
• How will this additional traffic affect existing conditions?
• What type of improvements or changes in the site plan density or use would be necessary to minimize the traffic impact of the proposed development?

There are ten basic components that should be included in a traffic impact study:

1. Description of Development Proposal
2. Description of Existing Roadways
3. Traffic Volumes (Present and Future)
4. Accident Analysis
5. Capacity Analysis (Present and Future)
6. Trip Generation
7. Background Traffic
8. Trip Distribution
9. Trip Assignment
10. Signal Warrant Analysis

The CCPC recommends the following thresholds for determining the need for a traffic impact study for any development which intends to access an arterial or collector road:

1) The proposed development consists of more than:

• 45 dwelling units (single family detached),
• 80 dwelling units (all other residential uses),
• 10,000 square feet gross leasable area of commercial uses,
• 2,000 square feet gross leasable area of a restaurant or convenience store,
• 17,000 square feet of office uses,
• 50,000 square feet of industrial uses, or
• 30,000 square feet of institutional uses.

2) Any combination of uses which will generate more than 1,500 vehicle trips per day. (PennDOT classifies a high volume driveway as having more than 1,500 vehicles per day.)

3) The proposed development is located near roadways, or intersections which are already heavily congested, or are operating at or below a level of service "D". This step requires a review of existing documentation such as the comprehensive plan or an area wide traffic plan. In some cases, new analyses consisting of traffic counts and level of service may be necessary.

4) The proposed development will impact roadways which have been identified as having inadequate or unsafe circulation or stopping distances.

5) The proposed access is within close proximity (less than 200 feet) to an existing or proposed medium or high volume (over 750 average daily traffic) driveway or intersection.

6) Traffic from the development would be significant enough to change the designated functional classification of adjacent roads.

A traffic impact study should be required for any development which intends to access a local road when any of the following conditions are met:

1) The proposed development consists of:
 • Any non-residential or non-agricultural uses,
 • More than 45 dwelling units (single family detached) with only one access point,
 • More than 80 dwelling units (all other residential units) with only one access point, or
 • Any residential use generating more than 100 total peak hour trips.
2) Traffic from the development would be significant enough to change the designated functional classification of adjacent roads.

The traffic impact study should be provided when the preliminary plan is submitted for municipal review. If there are significant revisions to the preliminary plan, the impact study should be revised and resubmitted with the final plan.

If a state road is to be accessed, the impact study should be submitted to the Pennsylvania Department of Transportation as part of the highway occupancy review process. For more information, please refer to: PennDOT’s Policies and Procedures for Transportation Impact Studies Related to Highway Occupancy Permits.

It may be necessary in some cases for the applicant to conduct the initial analysis of existing traffic counts and level of service to determine if a full traffic impact study is required.

Traffic Impact Fee Studies

Traffic impact fees are charges that can be made to developers by municipalities to provide the portion of the costs used to make capital improvements to the transportation system made necessary from development. Pennsylvania’s Traffic Impact Fee Law, Act 209 of 1990, defines an impact fee as "a charge or fee imposed by a municipality against new development to generate revenue for funding the costs of transportation capital improvements necessitated by and attributable to new development."

The law requires that there must be a demonstrated linkage between the development and the need for transportation improvements. This linkage is known as a "rational nexus" relationship.

Act 209 requires the following documents be completed before an impact fee ordinance is adopted:

- Comprehensive Plan;
- Zoning Ordinance;
- Subdivision and Land Development Ordinance;
- Land Use Assumptions Report;
- Roadway Sufficiency Analysis Report; and,
- Transportation Capital Improvements Plan.

The roadway sufficiency analysis and capital improvements plan must be prepared by a transportation planner or engineer. Both must be specific to the transportation service area and used as a base in the preparation of the Traffic Impact Fee Ordinance.
A traffic impact fee advisory committee is required to assist the municipality in the planning stages of the ordinance. Act 209 requires that at least 40 percent of the members must be residents involved in real estate, commercial or residential development, the building industry or who conduct the aforementioned businesses within the community.

Funds raised through impact fees can only be used for costs incurred for improvements designated in the transportation capital improvements plan and may not be used for the following:

- Constructing, acquiring or expanding facilities not included in the transportation capital improvements plan;
- Upgrading, updating, expanding or replacing existing capital improvements to remedy problems not attributable to new development;
- Repairing, operating, or maintaining existing or new capital improvements;
- Preparing or developing the land use assumptions report or capital improvements plan; and,
- Improving the interstate highway system, bicycle lanes, bus lanes, busways, pedestrian ways, rail lines or tollways.

For more information, please refer to PennDOT’s *Transportation Impact Fees: A Handbook for Pennsylvania’s Municipalities* guidance document.

Pennsylvania Transportation Partnership Act (Act 47)

The *Transportation Partnership Act* (Act 47 of 1985 as amended) was created to enable partnerships to be formed between the public and private sectors to assist the financing of necessary road improvements. The act establishes guidelines for private sector participation for the benefit of both the public and private sectors. The legislation became law in 1985 and was later amended in 1986.

Act 47 resulted from limited public funds and increasing traffic problems. Alternative funding methods had to be explored to accelerate transportation improvements in growing areas. This act provides municipalities with the ability to join together in forming Transportation Development Districts.

The creation of a transportation district must be based on a planning study which contains these items:

- History and Project Need: The actions that precipitated the need for improvements and the transportation studies which support the recommended improvements and partnership.
• Description of Proposed Project: A base map illustrating the proposed district and improvements included in the description of the project.

• Cost of Proposed Project: The total cost of the project, breakdown of costs for the individual improvements, timeframe, priorities of improvements and individual expenditures from the participating agencies, i.e., PennDOT and municipality.

• Plan of Financing and Method of Assessment: A list of possible financing options which will be used to finance the improvements. Also, an indication of who will be assessed in order to finance the projects and the formula that will be used to determine the assessment.

Act 47 allows municipalities to create transportation development districts to assist in the financing of transportation facilities and services. Roads, railroads, public transit, waterways and airports are included in the Act as eligible items.

The principal value behind the Partnership Act is that it enables municipalities and municipal authorities to use any of the following funding mechanisms from both public and private sources:

• Assessments upon business properties;
• Assessments upon each benefitted properties;
• Proceeds from any tax otherwise permitted by law;
• Notes and bonds; and,
• Grants, gifts or donations.

When an assessment is made on a property owner, the assessment must be "fair and reasonable" and there shall be no exception given to any affected property.

The proceeds collected are to be used only for new or improved transportation facilities and services and should not exceed the total costs identified in the district's multi-year transportation program.

This legislation enables municipalities to combine Act 47 with the following statutes to make the district more effective: Business Improvement Act; Municipal Authorities Act; and other financial legislation.

If property owners who represent more than 50 percent of the assessed valuation within the proposed district formally object, the district cannot be created.

A plan of the district must be submitted to the county and the designated metropolitan planning organization. This enables the plan to be reviewed and incorporated in the county-wide and regional Transportation Improvement Program. The improvements can then be included in the state's Twelve Year Program.
The Transportation Partnership Act may not work in every situation. It is evident from previous partnerships that a district works best when formed in a concentrated business corridor. The Route 29 corridor in East Whiteland and Tredyffrin Townships is a good example.

Partnerships created under the provisions of Act 47 can be more effective and in some cases more flexible when used in conjunction with other statutes as described above.

Because of certain provisions of Act 47 related to public input, it is essential that public and private sector interests be included in every aspect of the formation of a partnership district.

Public Private Transportation Partnerships (Act 88)
The following is PennDOT’s Fact Sheet regarding Public Private Partnerships (P3):

Act 88 of 2012 authorizes public private transportation projects in Pennsylvania. This tool will allow PennDOT and other transportation authorities and commissions in the state to enter into agreements with the private sector to participate in the delivery, maintenance and financing of transportation-related projects.

What is a P3 Project?
A P3 project is a contractual agreement between a public entity and private entity that:

- Transfers the responsibility of a facility’s engineering, construction, operation and/or maintenance to the private sector for a defined period of time;
- Allows the private sector to perform by contract a service previously provided by the public sector; and
- Ensures the private firm receives payments either from existing revenue sources or through the collection of new tolls or user fees.

The two basic P3 project types are:
- New Build Facilities – Adding capacity to the system by building something new.
- Existing Facilities – Improving capacity or performance of the current system through a P3 arrangement.

Public Private Transportation Partnership Board:

- Purpose: To approve potential Public-Private Transportation Projects;
- 7 Members include:
 - The Secretary of Transportation (Chair);
The Secretary of Budget;
Governor’s Appointee; and,
Four Legislative Appointees (one from each caucus).

• Must meet and report its actions to the General Assembly at least annually; and
• Must adopt guidelines for receiving and reviewing solicited and unsolicited proposals.

For more information, please refer to the PennDOT P3 webpage.

Zoning Ordinance
The establishment of zoning regulations has a direct relationship to the transportation network of a community, because it is the distribution and density of land uses which generates the travel demands on the transportation system. By carefully considering the transportation impacts of zoning districts, a community can actually impact future traffic patterns. Municipalities can improve traffic flow, reduce congestion and save the costs associated with new road construction by adjusting their current zoning, if necessary.

Typically, there are several elements of a zoning ordinance that can assist in integrating circulation and land use. They are:

1) Zoning districts
 • Permitted uses; and,
 • District location based on highway functional classification.

2) Bulk and area requirements
 • Lot area;
 • Setbacks;
 • Bulk; and,
 • Coverage.

3) Environmental considerations
 • Landscaping;
 • Screening;
 • Buffering; and,
 • Open space.
4) Parking

- Off-street parking;
- Number of parking spaces;
- Shared parking;
- Bicycle parking;
- ADA accessible parking;
- Ingress/egress to parking facilities; and,
- Landscaping of parking facilities.

These elements have an impact on the circulation network of a community in a variety of fashions including:

- Determining the potential number of vehicular trips;
- Establishing the amount, location and size of parking;
- Determining the length of the road network and the width of individual roads;
- Mitigating impacts by buffering land uses from highway operation;
- Impacting the operation of adjacent roadways; and,
- Affecting the potential for providing public transportation.

Different zoning techniques allow municipalities to develop strict performance standards. Innovations for linking transportation to land use include the use of bonus or incentive zoning, whereby density bonuses may be granted if a developer provides improvements such as constructing a transit center, operating an employee shuttle service, or locating adjacent to a regional rail station. An overlay zone or a special district may be created at an intersection, interchange or around a rail station, to allow more intense and efficient use of land, a unique mix of uses, or to require the provision of certain amenities. Planned Residential Development (PRD) zoning is used to encourage coordinated, mixed-use development of larger tracts of land while permitting more creativity and flexibility.

One of the most essential techniques used to integrate circulation and land use includes the locating of zoning districts according to the highway functional classification. Zoning districts and permitted uses must be compatible with the intended function of individual roads. For example, a zoning district which would allow a regional retail facility should be located near an interchange of a limited access highway or along an arterial road. This would focus the traffic on the higher classification of roads rather than on collectors and local roads. This technique emphasizes the need to have an updated, accurate functional classification.
Using Transfer of Development Rights (TDR) or variations of TDR allows a developer to purchase the development rights from a landowner whose property lies within an area of a municipality where development is severely restricted. The development rights may be transferred into another area within the same municipality or from one municipality to another if the two municipalities have a joint municipal zoning ordinance. This allows development to occur in areas where it is more appropriate. The use of TDRs also discourages development in areas without appropriate infrastructure.

Another "hybrid" form of TDR can be used to acquire land as a road right-of-way. A developer or landowner can dedicate land for right-of-way and still develop the parcel at the same density, square footage or bulk as though the land for right-of-way was never subtracted from the original lot area of the parcel.

Performance zoning can have transportation applications. For example, in certain zones a higher density of development could be permitted if a project reduces its traffic volume through such items as a shuttle bus, ridesharing or increased pedestrian circulation. The emphasis on pedestrian circulation can be achieved through village type zoning. Performance zoning can be used to create an overlay district that might provide incentives for establishing public transit facilities or dedicating additional right-of-way width.

One method of trying to encourage alternative modes of travel is by limiting the amount of parking at new development. If a proposed development is located near public transit facilities or can be integrated into a pedestrian or bicycle network, then municipalities should consider ordinance requirements to limit the amount of parking. A plentiful supply of free parking only encourages more automobile travel.

Caution needs to be used with this technique. Some land uses require considerable parking regardless of the availability of other modes of travel. An inadequate supply of parking can have economic impacts on a business community and can lead to overflow parking into adjacent parcels or streets.

Setbacks are a transportation related function of zoning. They should be determined according to the functional classification of the road regardless of municipal boundaries and zoning districts. This allows a road to function properly by providing a uniform distance between all structures and the road. Uniform sight distances can lead to a larger safety zone which may lower the accident rate. Regional zoning or, at a minimum, regional cooperation can address such issues as uniform setbacks along specific transportation corridors.
Subdivision and Land Development Ordinance

By preparing and adopting site design standards within a subdivision ordinance, a municipality can provide specific guidance for the layout and construction of new developments. Municipalities should update their ordinances to reflect new techniques dealing with access management and safety issues.

There are several elements of a subdivision and land development ordinance that can help integrate multimodal circulation and land use. These elements are:

- Street classification and layout;
- Street width and length;
- Street alignments and grades;
- Sight clearance;
- Private streets and driveways;
- Curbs and sidewalks;
- Pedestrian; bicycle and public transit facilities;
- Driveways and intersections;
- Intersection spacing;
- Utility easements and drainage;
- Screening and landscaping;
- Right-of-way and ultimate right-of-way widths;
- Parking facilities; and,
- Guidelines for a traffic impact study.

An effective technique in integrating circulation and land use is the blending of highway functional classification into the land development and subdivision ordinance. Specific design standards are applied to roads to accommodate varying functions. Coordination of the standards at the state, county and municipal levels assures consistency in the design and function of roads.

Municipalities should change the requirements for measuring streets from cartway width to lane width. Using one value for all cartways does not allow for flexibility in street design. Cartway widths should be more flexible and site specific according to lot sizes, the desire or need for on-street parking, the functional classification of the road and the overall design of the subdivision.

Municipalities should consider requiring an ultimate right-of-way along major transportation corridors such as arterial and collector roads. Ultimate
Chapter 5
Resources

Rights-of-way serve two functions. Land is preserved for eventual acquisition and widening of the road. If building setbacks are applied from the ultimate right-of-way, they have the added function of protecting adjacent land uses by providing a buffer between structures and the widened road. See the RIGHT-OF-WAY design element in Chapter 3 for more information.

Subdivision ordinances should allow flexibility in the area of building placement. Standards should be flexible enough to allow structures within a development to directly relate to the various transportation networks that serve that site including pedestrian, bicycle, vehicular and transit networks. For example, buildings in an office complex located along a public transit corridor should have minimum setbacks to encourage pedestrian links to the transit route. Greater use of transit can reduce the overall parking demand.

Pedestrian circulation standards should be established in the ordinance for sidewalks, pathways, bikeways, and transit facilities such as bus stops or shelters. Sidewalk standards should comply with the Americans with Disabilities Act. Specific design standards should be provided along with recommendations on how to interconnect different land uses. For example, sidewalks should be provided to schools and high pedestrian traffic generators.

Municipalities may find it difficult to require a walking or bicycle path that interconnects with other properties when no complete pathway system exists. An official map can be used to designate a particular non-vehicular circulation system and require developers and land owners to interconnect. This same system can be used to identify specific roads and adjacent parcels of land that should be required to provide accommodations for transit vehicles.

Intersections need to be addressed in subdivision ordinances. Every intersection contains several potential vehicular conflicts. The conflicts can be alleviated by providing adequate sight distances. Ordinances should provide specific criteria for intersection sight distance and clear sight triangle. Both are illustrated in the Chapter 3 INTERSECTIONS design element.

A uniform sign program should be maintained not only at major intersections but at intersections within subdivisions. Uniformity is useful for simple location purposes but more importantly for emergency 911 services.

Ordinances need to provide standards which are consistent with the provisions of PennDOT’s Liquid Fuels program. If a road is constructed to specifications that are not consistent with PennDOT standards, the municipality will not receive Liquid Fuels funds to maintain that road.
Bibliography

Publications

Airport Corridor Transportation Association, Rethinking the Suburban Bus Stop http://www.landscapes2.org/transportation/circulation/pdf/Rethinking-TheSuburbanBusStop.pdf

Chester County, Landscapes2: Chester County Comprehensive Policy Plan http://www.landscapes2.org/ls2online/ls2document.pdf

Chester County, Public Transportation Plan http://www.landscapes2.org/publications/transportation/PubTransPlan.cfm

Chester County, Road Functional Classification Technical Memorandum, June 2004 http://www.chesco.org/DocumentCenter/View/2587

Chapter 5
Resources

Delaware Valley Regional Planning Commission (DVRPC), The Automobile at Rest: Toward Better Parking Policies in the Delaware Valley
http://www.dvrpc.org/asp/pubs/publicationabstract.asp?pub_id=08081A

Duany Plater-Zyberk & Company SmartCode (Version 9.2) see also

Federal Highway Administration (FHWA), Manual on Uniform Traffic Control Devices (MUTCD) http://mutcd.fhwa.dot.gov/

FHWA, Memorandum regarding Bicycle and Pedestrian Facility Design Flexibility, August 20, 2013 http://www.chesco.org/DocumentCenter/View/33695

FHWA, Technical Summary on Roundabouts (FHWA-SA-10-006) http://safety.fhwa.dot.gov/intersection/roundabouts/fhwasa10006/

Institute of Transportation Engineers (ITE), Parking Generation and Guidelines for Parking Facility Location and Design: A Recommended Practice http://www.ite.org/tripgeneration/parking.asp

Pennsylvania Code, Title 67, Chapter 212, Official Traffic Control Devices http://www.pacode.com/secure/data/067/chapter212/chap212toc.html

Pennsylvania Code, Title 67, Chapter 441, Access To and Occupancy of Highways by Driveways and Local Roads http://www.pacode.com/secure/data/067/chapter441/067_0441.pdf
Pennsylvania Code, Title 67, Chapter 445, Outdoor Advertising Devices

Pennsylvania Code, Chapter 33, Rules of the Road
http://law.justia.com/codes/pennsylvania/2010/title-75/chapter-33

PennDOT, Access Management: Model Ordinances for Pennsylvania Municipalities Handbook, Publication 574
http://www.dot.state.pa.us/public/PubsForms/Publications/PUB%20574.pdf

PennDOT, Bicycle and Pedestrian Checklist – Design Process
http://www.dot.state.pa.us/public/PubsForms/Forms/D-310.pdf

PennDOT, Design Manual 2 – Chapter 5 – Lighting http://www.dot.state.pa.us/public/Bureaus/design/PUB13M/Chapters/Chap05.pdf

Pennsylvania Department of Transportation (PennDOT), Guidelines for the Design of Local Roads and Streets, Publication 70M http://www.dot.state.pa.us/public/bureaus/design/pub70m/incover.pdf

PennDOT, Mid-block crosswalk engineering and traffic study http://www.dot.state.pa.us/public/PubsForms/Forms/TE-113.pdf

PennDOT, Pavement Markings and Signing Standards TC-8600 and TC-8700, Publication 111 http://www.dot.state.pa.us/public/PubsForms/Publications/PUB%20111.pdf

Chapter 5
Resources

PennDOT, Project Level Highway Traffic Noise Handbook, Publication 24

PennDOT, Smart Transportation Guidebook

PennDOT, Specifications, Publication 408 http://www.dot.state.pa.us/Internet/Bureaus/pdDesign.nsf/Construction Specs408and7?readForm

PennDOT, Traffic Engineering Manual, Publication 46
http://www.dot.state.pa.us/public/PubsForms/Publications/Pub%2046.pdf

PennDOT, Traffic Signal Design Handbook, Publication 149
http://www.dot.state.pa.us/public/PubsForms/Publications/PUB%20149.pdf

PennDOT, Traffic Standard Drawings, TC-8800 Series, Publication 148
http://www.dot.state.pa.us/public/PubsForms/Publications/PUB%20148.pdf

PennDOT, Sound Decisions About Highway Noise Abatement

Philadelphia Parks & Recreation, Recommended Street Tree List

Transportation Research Board, Highway Capacity Manual
http://hcm.trb.org/?qr=1

Transportation Research Board, National Cooperative Highway Research Program (NCHRP) Report 672: Roundabouts: An Informational Guide
http://www.trb.org/Main/Blurbs/164470.aspx

Chapter 5
Resources

Websites

Brandywine Conservancy: Native Plants
http://www.brandywine.org/conservancy/landowner-resources/support-your-local-ecosystem-replacing-invasive-species-right-native

Chester County Landscapes2: http://www.landscapes2.org/

Federal Highway Administration (FHWA): Bicycle and Pedestrian Design Guidance

FHWA: Pedestrian and Bicycle Information Center
http://www.pedbikeinfo.org/

Pennsylvania Municipalities Planning Code, Article IV: Official Map
http://mpc.landuselawinpa.com/mpc_full4.html

Pennsylvania Department of Conservation and Natural Resources (PA DCNR): Planning Project Forms and Guidance Documents
http://www.dcnr.state.pa.us/brc/elibrary/forms/planningforms/index.htm

PA DCNR: Emerald Ash Borer
http://www.dcnr.state.pa.us/forestry/insectsdisease/eab/

PennDOT: Bicycle and Pedestrian Information Page
http://www.penndot.gov/ProjectAndPrograms/RoadDesignEnvironment/RoadDesign/Bike%20and%20Pedestrian/Pages/default.aspx#.VzOLVOIrJhE

PennDOT: Roundabouts
http://www.penndot.gov/ProjectAndPrograms/RoadDesignEnvironment/RoadDesign/Pages/Roundabouts.aspx#.VzOLcIrJhE

PennDOT: Public Private Partnerships Office
http://www.penndot.gov/ProjectAndPrograms/p3forpa/Pages/default.aspx#.VzOLkelIrJhE

US Access Board Guidelines and Standards
http://www.access-board.gov/guidelines-and-standards
For more information:

Chester County Planning Commission
601 Westtown Road
Suite 270
P.O. Box 2747
West Chester, PA 19380-0990

Tel: 610.344.6285
Fax: 610.344.6515

www.chesco.org/planning
www.landscapes2.org
www.ChescoPaGreen.org

Funding for the development of this Multimodal Handbook provided by:

Delaware Valley Regional Planning Commission